Localization precision of the superconducting imaging-surface MEG system

PDF Version Also Available for Download.

Description

A unique whole-head Magnetoencephalography (MEG) system incorporating a superconducting imaging surface (SIS) has been designed and built at Los Alamos with the goal of dramatically improving source localization accuracy while mitigating limitations of current systems (e.g. low signal-to-noise, cost, bulk). Magnetoencephalography (MEG) measures the weak magnetic fields emanating from the brain as a direct consequence of the neuronal currents resulting from brain function[1]. The extraordinarily weak magnetic fields are measured by an array of SQUID (Superconducting QUantum Interference Device) sensors. The position and vector characteristics of these neuronal sources can be estimated from the inverse solution of the field distribution ... continued below

Physical Description

3 p.

Creation Information

Kraus, Robert H., Jr.; Matlachov, A. N. (Andrei N.); Espy, M. A. (Michelle A.); Maharajh, K. (Keeran) & Volegov, P. (Petr) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A unique whole-head Magnetoencephalography (MEG) system incorporating a superconducting imaging surface (SIS) has been designed and built at Los Alamos with the goal of dramatically improving source localization accuracy while mitigating limitations of current systems (e.g. low signal-to-noise, cost, bulk). Magnetoencephalography (MEG) measures the weak magnetic fields emanating from the brain as a direct consequence of the neuronal currents resulting from brain function[1]. The extraordinarily weak magnetic fields are measured by an array of SQUID (Superconducting QUantum Interference Device) sensors. The position and vector characteristics of these neuronal sources can be estimated from the inverse solution of the field distribution at the surface of the head. In addition, MEG temporal resolution is unsurpassed by any other method currently used for brain imaging. Although MEG source reconstruction is limited by solutions of the electromagnetic inverse problem, constraints used for source localization produce reliable results. The Los Alamos SIS-MEG system[2] is based on the principal that fields from nearby sources measured by a SQUID sensor array while the SIS shields the sensor array from distant noise fields. In general, Meissner currents flow in the surface of superconductors, preventing any significant penetration of magnetic fields. A hemispherical SIS with a brim, or helmet, surrounds the SQUID sensor array largely sheilding the SQUIDs from sources outside the helmet while measuring fields from nearby sources within the helmet. We have implemented a finite element model (FEM) description of the SIS using the exact as-built geometry to accurately describe how the SIS impacts the forward physics of source models. The FEM is used to calculate the distribution of Meissner currents in the complicated surface geometry of the SIS such that B{perpendicular} = 0 at the surface. This model of the forward physics is described elsewhere in these proceedings [3]. In this paper, we present the results of localizing well characterized phantom sources using the SIS-MEG system, the SIS forward model, and a simple inverse method.

Physical Description

3 p.

Source

  • "Submitted to: 3rd International Symposium on Noninvasive Functional Source Imaging, NFSI 2001, September 6-9, 2001, Innsbruck, Austria"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-1916
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975285
  • Archival Resource Key: ark:/67531/metadc931306

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kraus, Robert H., Jr.; Matlachov, A. N. (Andrei N.); Espy, M. A. (Michelle A.); Maharajh, K. (Keeran) & Volegov, P. (Petr). Localization precision of the superconducting imaging-surface MEG system, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc931306/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.