A comparison of the design of Russian and US containers for plutonium oxide storage.

PDF Version Also Available for Download.

Description

The safe storage of plutonium in the form of plutonium oxide (Pu02) is a major concern in countries with significant plutonium inventories . The goal is to stabilize and package oxide in such a way that the possibility of leaks and failures are unlikely. Currently in Russia, Pu02 is stored 1 at the Mining and Chemical Combine (MCC, Zheleznogorsk) and at the Siberian Chemical Combine (SCC, former Tomsk-7). (Plutonium metal is stored at PA 'Mayak' and is not addressed here) . Current storage containers for Russian Pu02 do not meet modern safety requirements . Further, every three years the gaskets ... continued below

Physical Description

[7] p.

Creation Information

Mason, C. F. V. (Caroline F. V.); Zygmunt, Stanley J.; Wedman, Douglas E.; Eller, P. G. (Phillip Gary); Erickson, R. M. (Randall M.); Hansen, W. J. (Walter J.) et al. January 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The safe storage of plutonium in the form of plutonium oxide (Pu02) is a major concern in countries with significant plutonium inventories . The goal is to stabilize and package oxide in such a way that the possibility of leaks and failures are unlikely. Currently in Russia, Pu02 is stored 1 at the Mining and Chemical Combine (MCC, Zheleznogorsk) and at the Siberian Chemical Combine (SCC, former Tomsk-7). (Plutonium metal is stored at PA 'Mayak' and is not addressed here) . Current storage containers for Russian Pu02 do not meet modern safety requirements . Further, every three years the gaskets have to be replaced . The containers can become over pressurized due to radiation processes and this results in possible container failures 1 . In the US, Pu02 is present at several Department of Energy (DOE) sites 2 . US reports of long time storage of Pu02 show a few cases of storage container failures 2 among thousand of intact cases. Major causes of malfunction are metal oxidation in non-airtight packages and gas pressurization from inadequately stabilized oxide . Because of these failures the US DOE adopted a standard 3 for stabilization, packaging and storage of plutonium-bearing material that addresses these vulnerabilities .

Physical Description

[7] p.

Source

  • Submitted to: Plutonium Futures - The Science Conference, Albuquerque, NM, July 6-10, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-03-1167
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976562
  • Archival Resource Key: ark:/67531/metadc931295

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mason, C. F. V. (Caroline F. V.); Zygmunt, Stanley J.; Wedman, Douglas E.; Eller, P. G. (Phillip Gary); Erickson, R. M. (Randall M.); Hansen, W. J. (Walter J.) et al. A comparison of the design of Russian and US containers for plutonium oxide storage., article, January 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc931295/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.