Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity

PDF Version Also Available for Download.

Description

The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.

Creation Information

Burrill,A. January 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: BNL--82024-2009-IR
  • Grant Number: DE-AC02-98CH10886
  • DOI: 10.2172/950007 | External Link
  • Office of Scientific & Technical Information Report Number: 950007
  • Archival Resource Key: ark:/67531/metadc931272

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:29 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burrill,A. Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity, report, January 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc931272/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.