Title: NONLINEARITY IN MODAL AND VIBRATION TESTING

Author(s): Norman F. Hunter, LANL, ESA-WR

Submitted to: International Modal Analysis Conference
February 3-7, 2003
Orlando, Florida
Nonlinearity in Modal and Vibration Testing

Norman Hunter
Engineering Sciences Division
Weapon Response Group
Los Alamos National Laboratory

2/1/2003
Abstract

This set of slides describes some aspects of nonlinear vibration analysis thru use of analytical formulas and examples from real or simulated test systems. The systems are drawn from a set of examples based on years of vibration testing experience. Both traditional and new methods are used to describe nonlinear vibration.
What is Nonlinearity?

Linear Differential Equation: \(Mx'' + Cx' + Kx = F \)

Nonlinear Differential Equation: \(Mx'' + Cx'^2 + K(x + \alpha x^3) = F \)

- Superposition Fails
- Linear Frequency Response or Modal Model Does not Accurately Predict Measured Response.
- Non-Gaussian Probability Density for Gaussian Excitation.
- Coupling Between Frequencies.
- FRF Changes as a Function of Excitation Type or Level.
Sources of Nonlinearity

- Joints (Microslip and Macroslip). Hysteresis.
- Large Deflections (Geometric Nonlinearities).
- Material Nonlinearities (Foams, Viscoelastic Materials).
- Friction.
- Loose Parts (Rattling).
- Damage (Cracks).
How Nonlinearity Effects System Response

- Time History
- Autospectrum
- Frequency Response Function.
- Coherence
Nonlinear Effects on a Sinusoidal Time History

For sinusoidal excitation harmonic distortion indicates a nonlinearity somewhere in the system.

25% Harmonic Distortion 100% Harmonic Distortion
Nonlinear Effects on a Random Time History

- Response of Linear Oscillator
 - Linear SDOF Oscillator Acceleration Response

- Response of Polynomial Oscillator
 - Polynomial SDOF Oscillator Acceleration Response

2/1/2003
Nonlinearity in Modal and Vibration Testing
Nonlinearity Effects on the Autospectrum

Autospectrum of Linear Ten DOF system.

Autospectrum of NonLinear Ten DOF system.

Increased High Frequency Response

2/1/2003

Nonlinearity in Modal and Vibration Testing
Nonlinear Effects on the Autocorrelation

Linear Amplitude

Drive Point

Location

Frequency

Linear 8 DOF System

8 DOF System, Rattling at Location 8.

Increased High Frequency Response

2/1/2003 Nonlinearity in Modal and Vibration Testing
Nonlinear Effects on the FRF

Linear TenDOF System

Non-Linear TenDOF System

Increased Damping
Additional Modes

Noisy FRF,
More High Frequency Response

FRF of Linear TenDOF System

FRF of Nonlinear TenDOF System
Basic Nonlinear Effects.

Autospectrum- Broadens the Autospectrum By Adding Frequencies through frequency interactions. Often visible as Increased values at frequencies above drive range.

Frequency Response Function- FRF peaks are lower, implying Increased damping. FRF is noisier.

Coherence - lower, especially at higher frequencies.
Locating Nonlinear Elements

If the nonlinear behavior generates high frequencies, these may be greater in amplitude near the location of the nonlinearity.
Functions Designed to Quantify Nonlinear Behavior

- Amplitude Probability Density.
- Higher Order Spectra.
- Time or Amplitude Dependent Models.
- Wavelets.
- State Space Models based on Nonlinear Differential Equations.

- Amplitude Probability Density.
- Bicoherence
- TriCoherence.
Probability Density Function

Sample Filtered Random Time History

\[pdf(x) = \frac{\sum_{n \text{ in range } x-\Delta x \text{ to } x+\Delta x}}{N} \]

Probability that the magnitude of \(x \) at a randomly chosen time lies between \(x-\Delta x \) and \(x+\Delta x \) limit as \(\Delta x \to 0 \)

\[P(x) = \int_{x-\Delta x}^{x+\Delta x} pdf(x) \, dx \]

2/1/2003
Probability Density

\[P(a < X < b) = \int_{a}^{b} p(x) \, dx \]

\[a < b \]

\(p(x) \) is the probability density of \(x \).

\[P(-\infty < X < \infty) = \int_{-\infty}^{+\infty} p(x) \, dx = 1.0 \]

Area under the Probability Density is unity, which is just a way of saying that for sure the value of \(x \) is somewhere.
Moments of a Density

Mean

$$\bar{x} = \frac{1}{N} \sum_{j=1}^{N} x_j.$$

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} (x_j - \bar{x})^2}$$

Skewness

$$skewness = \frac{1}{N} \sum_{j=1}^{N} \left[\frac{x_j - \bar{x}}{\sigma} \right]^3$$

Kurtosis

$$kurtosis = \frac{1}{N} \sum_{j=1}^{N} \left[\frac{x_j - \bar{x}}{\sigma} \right]^4 - 3$$

For Gaussian

$$\mu$$

$$\sigma$$

Skewness = zero

Kurtosis = $\frac{96}{\sqrt{N}}$
Histogram Estimate
1,024 points of random Noise.

Histogram Estimate
1,048,576 points of random Noise.

\[
y = \text{randn}(1048576, 1);
\]
\[
>> [n, xout] = \text{hist}(y, 128);
\]
\[
>> \text{bar}(xout, n/1024)
\]
\[
>> \text{xlabel('MAGNITUDE')}
\]
\[
>> \text{ylabel('PDF')}
\]

2/1/2003 Nonlinearity in Modal and Vibration Testing
The Kernel Estimator

\[p(x) = \frac{1}{nh} \sum_{i=1}^{n} k \left(\frac{x - X_i}{h} \right) \]

where

- \(h \) = window width.
- \(n \) = number of data points.
- \(i \) = point index
- \(X_i \) = Kernel Location
- \(x \) = data point value.

The kernel estimate at \(x \) is a scaled summation of the points within the kernel, weighted by the kernel value at the point location.

\[\text{Kernel } K, \int_{-\infty}^{\infty} k(x) dx = 1.0 \]
Kernel Density Estimate plotted on a Logarithmic Scale for Gaussian Random Noise.

Gaussian Probability Density, Log Scale

1024 Points

1048576 Points
Estimated Probability Density, Linear Single Degree of Freedom System
Driven by Gaussian Noise

Skewness=0.0078
Var=0.017
Kurtosis=-0.1165
Variance Kd=0.035

Green is Gaussian, Red is estimated response.

2/1/2003
Nonlinearity in Modal and Vibration Testing
ANALOG NONLINEAR OSCILLATOR

PDF of ASCIN

MAGNITUDE

PROBABILITY DENSITY

Skewness= -0.00015 std=+/- 0.0014
Kurtosis= 1.98 std=+/- 0.119
Crest= 2.999
2/1/2003

PDF of ASCOUT

MAGNITUDE

PROBABILITY DENSITY

Skewness= -0.2026 std=+/- 0.051
Kurtosis= 3.09 std=+/- 0.2939
Crest= 4.61

Nonlinearity in Modal and Vibration Testing
Higher Order Spectra

Second Order Spectra

\[
\begin{align*}
H_{xx}(\omega) &= X(\omega)X^*(\omega) \quad \text{Power Spectrum} \\
H_{xy}(\omega) &= Y(\omega)X^*(\omega) \quad \text{Cross Spectrum}
\end{align*}
\]

Higher Order Spectra

\[
\begin{align*}
H(\omega_1, \omega_2, \omega_1 + \omega_2) &= X(\omega_1)X(\omega_2)X(\omega_1 + \omega_2) \quad \text{Autobispectrum} \\
Y(\omega_1, \omega_2, \cdots \omega_N, \omega_1 + \omega_2 + \cdots + \omega_N) &= X(\omega_1)X(\omega_2)X(\omega_3) \cdots X(\omega_1 + \omega_2 + \cdots + \omega_N) \quad \text{Autonspectrum}
\end{align*}
\]

Higher Order Spectra have a number of variants depending on the Combination of X (Input) and Y(response) terms on the Right hand side of the equations.
Higher Order Spectra

Bicoherence,

\[\gamma^2(\omega_1, \omega_2, \omega_{1+2}) = \frac{\left[E(X(\omega_1)X(\omega_2)Y(\omega_1 + \omega_2)) \right]^2}{\left[E(X(\omega_1)X(\omega_2)) \right]^2 \left[E(Y(\omega_1 + \omega_2)) \right]^2} \]

\[0.0 \leq \gamma^2(\omega_1, \omega_2, \omega_{1+2}) \leq 1.0 \]

Unity for complete quadratic dependence, zero for no quadratic dependence

Reasonably straightforward, results readily displayed in three dimensional graphics.

Tricoherence in the special case for \(\omega_1 \) coupling to \(3\omega_1 \).

\[\gamma^2(\omega_1, \omega_1, \omega, 3\omega_1) = \frac{\left[E(X(\omega_1)X(\omega_1)X(\omega_1)X(3\omega_1)) \right]^2}{\left[E(X(\omega_1)X(\omega_1)X(\omega_1)) \right]^2 \left[E(X(3\omega_1)) \right]^2} \]

\[0.0 \leq \gamma^2(\omega_1, \omega_1, \omega, 3\omega_1) \leq 1.0 \]
A Simple Example of Higher Order Spectra

$S_1 = \sin(2\pi 20t)$
$S_2 = \sin(2\pi 30t)$

$S_{out} = s_1 \cdot s_2$

Nonlinearity in Modal and Vibration Testing
Bicoherence of the Product of Two Sinusoids

Peaks Correspond to Quadratic Dependence.

The 45 degree line is a line of constant \(f_1 + f_2 \).

Blue line indicates a plane of symmetry

\[
\gamma^2(\omega_1, \omega_2, \omega_{1+2}) = \frac{\left[E(X(\omega_1)X(\omega_2)Y(\omega_1 + \omega_2)) \right]^2}{\left[E(X(\omega_1)X(\omega_2)) \right]^2 \left[E(Y(\omega_1 + \omega_2)) \right]^2}
\]
These levels are based on averaging out the effects of unrelated signals, more blocks of averaging means a lower level.

STATISTICAL ERROR IN THE BICOHERENCE

75 Blocks of 256 Points each.

387 Blocks of 256 Points each.

2/1/2003 Nonlinearity in Modal and Vibration Testing
Bicoherence, Acceleration of Mass 10
Tendof System

linear

bilinear

2/1/2003 Nonlinearity in Modal and Vibration Testing 30
Bicoherence Example, Quadratically Related Signals

T=[0:32767]/1000;
x=0.05*randn(32767,1)+(sin(2*pi*50*t).*exp(-t/10))';
y=0.07*randn(32767,1)+x.^2;
[bc,ff,rndout]=bicoc1(x,y,1000,512);
mesh(ff,bc)
Contour(ff,bc,20);
Methods Reviewed

- Autospectrum
- Frequency Response Function
- Coherence
- Amplitude Probability Density (Skewness, Kurtosis).
- Bicoherence, Tricoherence (to be illustrated).
Review Some Systems

- Linear Ten Degree of Freedom Oscillator
- Bilinear Ten Degree of Freedom Oscillator.
- Eight Degree of Freedom System (Linear and nonlinear).
Ten Degree of Freedom System

Linear Case: \[k_{45} = k_{\text{ref}} \]

Bilinear Case: \[x_4 - x_5 \leq 0 \]
\[k_{45} = 4.0k_{\text{ref}} \]
\[x_4 - x_5 > 0 \]
\[k_{45} = 0.25 k_{\text{ref}} \]

Loss of Stiffness in Tension
Ten Degree of Freedom Linear System

Acceleration Response of Mass 10

2/1/2003 Nonlinearity in Modal and Vibration Testing 35
Tendof Linear

Frequency Response Function
Force to Mass 10

Coherence Function, Force to Mass 10.
Ten Degree of Freedom Linear System Mass 5 Response

Skewness = 0.0111
Std = 0.044

Kurtosis = 0.0477
Std = 0.044
Tendof Linear

Bicoherence, Tendof, No Bilinear Spring

Frequency F2

Frequency F1

2/1/2003
Nonlinearity in Modal and Vibration Testing
Imaginary Part of Ten Degree of Freedom System Transfer Functions.
R = radius.
Shorter radius
Means increased
Damping.

Θ = angle, increasing
Angle means increasing
Frequency.

Ten Dof Linear

REAL PART

IMAGINARY PART

LINEAR TEN DOF SYSTEM

2/1/2003
Nonlinearity in Modal and Vibration Testing
Acceleration Time History Response
10DOF Bilinear Oscillator

Acceleration Response of Mass 10, Bilinear System

Time in Seconds

Amplitude

2/1/2003
Nonlinearity in Modal and Vibration Testing
Tendof Bilinear

Transfer Function

Coherence

2/1/2003 Nonlinearity in Modal and Vibration Testing
Autospectrum, Linear and Bilinear Tendof System

Linear System

Bilinear System

Distinct hump at location 4.5

2/1/2003

Nonlinearity in Modal and Vibration Testing
Tendof Bilinear Bicoherence, mass 5 response
Local Mode Shapes-Linear and Bilinear Ten DOF System
Eight Degree-of-Freedom System

Chuck Farrar, Bill Baker, Scott Doebling Los Alamos,
ESA-EA
Nonlinearity in Modal and Vibration Testing

2/1/2003
R721u7a, d7a
Kurtosis as a function of Bumper Location

Bumper at 1-2, Cases 11-12

Bumper at 4-5, cases 9-10

Bumper at 7-8, Cases 7-8

No Bumper cases 1-6

2/1/2003 Nonlinearity in Modal and Vibration Testing
No Bumper Present

Skewness=0.121 Std=0.158

Kurtosis= 0.277 Std=0.084

Bumper Present

Skewness=0.768 Std=0.161

Kurtosis= 0.644 Std=0.112

2/1/2003

Nonlinearity in Modal and Vibration Testing
8DOF Mode Shape 1 vs. Time

Time in Seconds

Location

2/1/2003

Nonlinearity in Modal and Vibration Testing
8DOF Mode Shape 1 vs. Time Bumber

Shape 1 R721D7a

Time in Seconds

Location

2/1/2003

Nonlinearity in Modal and Vibration Testing
Autospectra, 8 Dof System

Nonlinear, Bumber at Location 4-5

Linear or Nonlinear?
Bumper Location?

2/1/2003
Nonlinearity in Modal and Vibration Testing
Frequency Response Function 8DOF System

Imaginary Part

Transfer Functions, 8DOF, R721U7A

Location 0 0 10 20 30

Frequency 0 0 10 20 30 40 50 60 70

2/1/2003 Nonlinearity in Modal and Vibration Testing 55
Comparative Frequency Response Functions, 8 DoF System.

- Bumper at 1-2
- Bumper at 4-5
- No Bumper
- Bumper at 7-8

2/1/2003

Nonlinearity in Modal and Vibration Testing
8DOF BUMBER Frequency Response Function vs. Time

Shape 1 R721D7a

Time

Frequency