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Nonlinear theoretical tools for fusion-related
microturbulence: Historical evolution, and recent
applications to stochastic magnetic fields, zonal-flow

dynamics, and intermittency

J A Krommes

Plasma Physics Laboratory, Princeton University,
P.O. Box 451, MS28, Princeton, NJ 08543-0451 USA

Abstract. Fusion physics poses an extremely challenging, practically complex problem
that does not yield readily to simple paradigms. Nevertheless, various of the theoretical
tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or
found application to the development of fusion-related plasma turbulence theory. A brief
historical commentary is given on some aspects of that specialty, with emphasis on the role
(and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center
theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force
from the statistical equations of plasma turbulence, and the possibility of a renormalized K—y
theorem is discussed. An unusual application of quasilinear theory to the problem of plasma
equilibria in the presence of stochastic magnetic fields is described. The modern problem of
zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of
nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition
to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian
formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic
analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory
of intermittent chaotic statistics and the generation of coherent structures from turbulence is
mentioned, and an appeal is made for some new tools to cope with these interesting and difficult
problems in nonlinear plasma physics. Finally, the important influence of the intellectually
stimulating research environment fostered by Prof. Allan Kaufman on the author’s thinking
and teaching methodology is described.

1. Introduction

This article records and expands upon the material I presented at the symposium on Plasma
Theory, Wave Kinetics, and Nonlinear Dynamics: KaufmanFest 2007. Its goal is to discuss
a very biased selection of analytical tools for the study of possibly strong plasma turbulence
(especially of the kind relevant to fusion applications) in light of some of the methods pioneered
and championed by Prof. Allan Kaufman and his coworkers. Those were inspirational to me
early in my career and should be part of the repertoire of every plasma theorist, especially
those just getting started. In particular, I will mention multiple-scale techniques [1], quasilinear
theory [2, 3], oscillation-center transformations [4, 5], the K—y theorem [6], Lie perturbation
theory [5], and the Weyl calculus [7]. These are very well suited for applications to weak-
turbulence theory. In most cases they have not been successfully applied to strong turbulence;
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Figure 1. Chronology of selected research papers on statistical methods [DIA (1959) to 1969].
More detailed versions (with some differences of emphasis) of the timeline figures presented here
can be found in Ref. 28.

however, given the complexity of the subject, there really is no substitute for elegant and concise
methods that apply in any regime whatsoever. They provide important reference results, and it is
illuminating to understand when and why they fail and what generalizations or alternatives have
evolved. With regard to the latter, I will mention the Martin—Siggia—Rose (MSR) formalism,
statistical moment closures such as the direct-interaction approximation (DIA) and the eddy-
damped quasinormal Markovian (EDQNM) theory, and the use of model nonlinear Langevin
equations for estimating higher-order statistics. I will also describe some recent calculations that
employ bifurcation theory, as well as a novel use of a wave kinetic equation to describe nonlinear
statistical interactions. The latter analysis makes good use of a Hamiltonian formulation of
E x B advection.

I cannot possibly give an adequate discussion of the evolution of plasma turbulence theory
through its approximately half-century of development in the present short article. However,
I do hope to provide some perspectives and references that may help the reader organize a
vast amount of technical information.! Initial foundations were laid in the 1960’s (see the
timeline in Fig. 1) with the development of quasilinear theory (QLT) [9, 10], weak-turbulence
theory (WTT) (see Refs. 11-13 and the references in Ref. 14), and resonance-broadening theory
(RBT) [15, 16]. For reference, Kraichnan’s pioneering DIA was published in 1959 [17] for strong
incompressible Navier—Stokes turbulence and generalized in 1961 [18] to arbitrary quadratically
nonlinear dynamical systems. Early plasma theorists were mostly oblivious to the DIA, and a
fundamental 1967 article by Orzsag and Kraichnan [19] critiquing RBT and describing the DIA
for Vlasov turbulence was virtually ignored for about a decade.

The 1970’s (see Fig. 2) were a time of great excitement and advances on several fronts,
including Davidson’s systematic treatise on WTT [14], Dewar’s pioneering work on oscillation-
center QLT [4], and the work of Smith and Kaufman [37] on stochastic heating. In 1976

L Another related article with pedagogical intent is my written account of the four introductory lectures on
plasma turbulence that I delivered at the 19th Canberra International Physics Summer School [8].
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Figure 2. Chronology of selected research papers (1970 to 1979).

I published some work on the nonlinear theory of convective cells [38], a strong-turbulence
calculation that led me to appreciate just how difficult the turbulence problem really was. In
an attempt to broaden my horizons, I arranged for several lengthy summer visits to Berkeley,
circa 1976-8. There I was introduced to Allan’s distinctive style and an immensely pleasurable
and stimulating intellectual environment (quite different from the mission-oriented ambience of
my home base at Princeton University’s Plasma Physics Laboratory). Allan, of course, was
into everything. But I was also inspired by meeting (among others) John Cary (working on
ponderomotive force via Hamiltonian-Lie methods); Shayne Johnston (a former fellow grad
student at Princeton, then working with Allan on Hamiltonian methods for ponderomotive
effects and nonlinear wave—particle interactions); Allan Lichtenberg (stochasticity); Robert
Littlejohn (new tools for single-particle motion); Harry Mynick (beam-plasma interaction); and
Gary Smith (stochastic heating). I also participated in the reading group that was dissecting
Chirikov’s thesis line by line; that provided my first introduction to nonlinear dynamics. Either
directly or indirectly, all of those interactions and research topics served to inspire my future
research.

Perhaps the most significant direct consequence of my Berkeley interactions was the work on
nonlinear Hamiltonian gyrokinetics by Dubin, Krommes, Oberman, and Lee [43], which built
on the new techniques being developed by Robert Littlejohn [42]. However, although nonlinear
gyrokinetics is absolutely key to the modern development of fusion theory and simulation, the
gyrokinetics story has been told frequently [8] and reviewed at length [44, 45|, so I shall not
discuss it further in this article. Instead, I would like to focus on the significance of some of the
other tools about which I learned at Berkeley in the context of the turbulence problem, and also
point out some instances in which new tools have been required.

2. Tools for Turbulence

In Secs. 2.1-2.5 I shall give a general discussion of the challenges of a statistical theory of
turbulence. The relationship of the abstract formalism to the Berkeley methods may not be
immediately apparent. However, the patient reader will be rewarded in Sec. 2.6, where classical
calculations relating to ponderomotive force will be reconsidered from the point of view of



renormalized statistical turbulence theory. Then in Sec. 2.7 I will describe an application of
quasilinear theory to the practical problem of the determination of plasma equilibria in the
presence of stochastic magnetic fields. That calculation ties together a variety of themes relating
to statistical formalism.

2.1. The statistical turbulence problem

A fundamental signature of turbulence is its unpredictability, i.e., its extreme sensitivity to small
changes in initial conditions. Nonlinear dynamics provides rigorous proofs that certain dynamical
systems can contain behavior that is as random as a coin toss [46, 47]. Such observations motivate
the application of statistical methods to nonlinear PDEs (although this is a definite leap of faith
because, as Poincaré explained more than a century ago, regular and stochastic regions are
usually intertwined in a very complicated fashion [48, 49]). For definiteness, let a deterministic
equation evolve a field 1 (t) from an initial condition 1. Formally, this can be done by the
simple artifice of assigning a smooth probability density function (PDF) P(tg) to the initial
conditions, thus creating a statistical ensemble. The general goal is then to calculate the fully
multivariate probability density functional P[¢]. From such a functional, one can in principle
extract correlation functions involving n time points for arbitrary n > 1. Generalizations of
such PDFs enable one to calculate n-point response functions as well.

Although this goal is easily stated, it is virtually impossible to achieve it in practice. The
physical difficulty is that the various regions of integrable and chaotic behavior present in
the typical nonlinear PDE cannot be distinguished by low-order statistical moments. As a
(somewhat contrived) mathematical example, consider one ensemble comprising Gaussianly
shaped spikes (examples of coherent structures) uniformly distributed on a large interval of
width T', namely (t) = (2m0?)~1/2 exp[—(t —to)?/202] with P(ty) = T—'; and another ensemble
whose realizations obey the stochastic oscillator equation [18]

A (t) + i) = 0, (1)

where tilde denotes a random variable and Qis a centered Gaussian random variable with
(Q2) = B2, The covariances (09 (t)6¢™ (t')) (where 51 = 1) — (1) and the angle brackets denote
ensemble averaging) can both be made identical to exp(—% 272) (where 7 = t —t' and = denotes
a definition) with the choices 8 = (2m)Y/2T and o = (47)~/2T~! [neglecting corrections of
o(T—h).

In spite of such difficulties, the traditional analytical approach to the turbulence problem
has been the construction of statistical closures based on low-order moments. That subject
has been reviewed exhaustively [28, and references therein]. More recently, methods based on
the construction of entire PDFs have been explored [50, 51]. Yet another approach is a direct
attack using methods of nonlinear dynamics [52]. However, while the latter techniques have
considerable promise for systems with small number of degrees of freedom (for some related
discussion, see Sec. 3.1), it is unclear how to proceed for realistic systems with huge numbers of
excited modes; even if there is a strange attractor embedded in the phase space, its dimension
may be very large.

2.2. Statistical observables

The first step in developing a statistical formalism is to define the basic dependent variables.
That is nontrivial. One obvious candidate is the mean field (1), but that frequently vanishes
due to symmetry. At the level of two-point functions, in an Eulerian framework there are two
natural functions: the correlation function C(t,t") = (§1(t)0¢(t')); and the response function
R(t;t") = (6¢(t)/on(t')), where 7 is a statistically sharp source term added to the right-hand
side of the dynamical equation, i.e., 9y¢) + --- = 7j(t). That (¢) and C are cumulants [21] is



clear; the interpretation of R as a cumulant is more subtle and interesting and follows from the
work of MSR [28, 31].

Statistically averaged quantities such as (¢), C, and R are called statistical observables.
(1 itself is called the primitive amplitude and is assumed to obey a dynamical evolution equation
that is of first order in time and possesses a polynomial, typically quadratic, nonlinearity.) In a
cumulant description of turbulence, the goal is to find a system of equations closed in a small
number of such low-order observables. That is difficult because it is easy to see that nonlinearity
in stochastic quantities couples cumulants through all orders. This is the well-known statistical

closure problem [53].

2.3. Resonance broadening

For an introductory discussion of some of the difficulties inherent in a formalism appropriate for
strong turbulence, I shall focus on the response function R, which is a mean Green’s function.
In simple cases, it can be interpreted as a conditional probability. [Recall that the PDF of a
random variable ¢ can be expressed as P(¢)) = (§(¢p — v)).] Two important basic examples of
response functions are (i) the single-particle propagator for free-streaming motion, and (ii) the
diffusion Green’s function. The former obeys

A9V (x, v, t; ', ' ) +v- Vg0 =5t —t)d(x — 2')o(v — V'), (2)
the solution of which is
g (@, v, t;2' ' 1) = Ht —t")o(x — ' —v(t —t')6(v —v). (3)

[Here H(7) is the Heaviside unit step function that reflects causality.] Nothing is random here;
g(o) is its own mean. It is the conditional z—v phase-space PDF of finding the particle at (z,v)
at time ¢, given that it was at (’,v’) at ¢/. This particular function is singular; its Fourier
transform? (x — ' — k, t —t' — w) is

d(v—1')
—i(w—k-v+ie)’

3O (k,v,w;v) = (4)

where the presence of € (a positive infinitesimal) reflects causality. Note for future use that the
reduced, v-space PDF is ¢ (v, t; v, t') = [ dx g (z, v, t; 2’ v, t') = H(t —t')d(v — v') or

d(v—7')
—i(w + i€)’

1

50 (1w ') =
9" (v,w;v') St

70\ w) = (5)

where A is the Fourier wave number conjugate to v — v’.?
The diffusion Green’s function is g(v,t;v’,t") = (g(v,t;v',t’)), where

0rg(v,t;0", ) + a(t) - Opg = 6(t —t')d(v — V') (6)

and a(t) = (¢/m)E(t) is Gaussian white noise characterized by (@) = 0 and (da(t)da(t')) =
2D4(t—1t'). Although the most conventional way of solving for g is to recognize that the average
of Eq. (6) is rigorously the diffusion equation

drg(v,t;0',t") — DV2g = 6(t — t')d(v — v'), (7)

2 A consistent set of conventions is described in Appendix A of either Ref. 28 or Ref. 45. In this paper I use the
circumflex to denote the Fourier transform in at least one of the variables.

3 Translational invariance in v is not a general property of velocity-dependent Green’s functions. For example,
g (x,v,t; 2, v', ') does not possess that property.



an alternate approach is to note that the solution of Eq. (6) is, via the method of characteristics,

vt ) = 5 <v o - /t tdZ&(%)) , (8)

the average of which can be calculated using cumulant expansions (which truncate at order 2
for Gaussian statistics). Either way, one finds

gv, ;0" t) = H(t—t)exp —M (9a)
7 ) 4D(t _ t,) )

1

IAw) = ST D) (9b)

Equation (9b) should be compared with Eq. (5). Whereas in Eq. (5) all frequencies (with the
exception of the single point at w = 0) are large with respect to ¢, the resonance-broadened result
(9b) opens up a continuous band of frequencies that are small with respect to the diffusion rate.
For those frequencies, it is not valid to treat D (or a) as small and endeavor to calculate its effect
via regular perturbation theory. Such an attempt leads to singularities that grow progressively
worse with order; thus, with n = A\2D denoting the resonance broadening, one has formally

11 [1_iﬁ_<g>2+...} (10)

—i(w+in) —iw w

Only the sum of the series through all orders reconstructs the well-behaved function (9b).

2.4. Renormalization

It is undesirable to be forced to sum such series explicitly for several reasons: (i) in realistic
situations, the values of most of the terms in the infinite series are not available in any practical
way; (ii) an asymptotic series, even through all orders, may not represent the function from
which it is derived [54]. (The classic example is e ~1/€ ~ 0 + 0e 4 0e? + - - -.) Tt is better if one is
never required to calculate the series in the first place. Very loosely, any technique that effects
or, better, bypasses altogether the summation of an infinite series is called renormalization. The
term arises from quantum field theory, where one is concerned with determining the physically
measurable (observable) mass and charge of a particle.

Renormalization is a vast subject [55] that certainly cannot be delved deeply into here.
But it is useful to mention some of the consequences, which can be surprising. In particular,
renormalization can lead to anomalous scalings that cannot be predicted by naive dimensional
analysis [56]. A model of random passive advection illustrates the basic point. Consider

Oz, t) + V(1) Vi = 0. (11)

Here V is a statistically specified random velocity. In reality, V would depend on both x and ¢,
but here let us ignore its & dependence for simplicity. Then the spatial Fourier transform of
Eq. (11) is

Ohw(t) +1Q(t) e =0, (12)

which introduces the random advection frequency ﬁ(t) =k ‘N/(t) (This frequency also plays a
role in the later considerations of zonal flows in Sec. 3.2.) For even greater ease of analysis, let

us ignore the time dependence as well, i.e., fNZ(t) — §~2, a Gaussian random number with <S~)> =0



and <§2> = (2. Thus, we have arrived at the stochastic oscillator equation (1) (repeated here
for convenience),

Ap = —iQy, (13)

but now with a physical understanding of ) as a measure of nonlinear advection.

Although Eq. (13) is nonlinear in stochastic quantities, it is dynamically linear (as emphasized
by Kraichnan [18]); thus the exact solution is trivially ¢(t) = exp(—iQ)yy or ¥(w) =
2mpod(w — Q). (I shall assume that 1y is a Gaussianly distributed random variable statistically

independent of V'.) Either of the ¢- or w-dependent forms demonstrates conservative evolution
of any single realization. Because the Gaussian PDF of (2 is largest (and smooth) at 2 = 0, the

form of J(w) indicates a broad resonance at w = 0; this is characteristic of strong turbulence.
Note that although each realization is oscillatory, statistical averaging leads via phase mixing
to a decaying correlation function:

C(t,t) = O(r) = (80(1)5¢™ (') = exp(—55°7°)(|6¢0 /). (14)

This phase-mixing-induced decay (closely related to Landau damping) is analogous to the effects
of the “nonlinear scrambling” that occurs in dynamically nonlinear systems with sufficiently
strong mixing properties [32].

Although in the present case one knows the exact solution, one does not have that luxury for
realistic nonlinear PDEs, so one is led to consider approximate equations for relevant observables.
In doing so, it turns out to be very useful to introduce the concept of a mean Green’s function.
Thus, consider

p(t) + 1 =1(1), (15)
where a statistically sharp external source 7 has been added.* The average response of the
oscillator is characterized by the mean Green’s function or infinitesimal response function®

./ 0p(t) >
GO =5 /o 1o
In general, one can postulate for R the formally closed Dyson equation
¢
OR(E:1) + / AS(EDREY) = 6(t— 1), (17)
tl

Then the goal becomes the calculation of the memory function X.

Equation (17) is nonlocal in time, which is to be expected in any system that possesses a
nonzero autocorrelation time. But if one wants to just capture the time scale, one may less
ambitiously characterize the oscillator by the Markovian equation

O-R(T) + ™R = §(7), (18)

where 7 = foood? Y(7), and attempt to calculate .5 Let us begin naively and try to do that
perturbatively. Now at lowest order (quasilinear level), it is easy to find that

£%(7) = 2RO (7), (19)

4 Do not confuse the external source 7 with the resonance broadening 1. Unfortunately, there are not enough
letters in the Greek alphabet. The notation 7 is used for consistency with Ref. 31. Here the circumflex does not
indicate a Fourier transform, but rather a particular kind of source.

5 Setting 7 to 0 after the functional differentiation is unncessary in this dynamically linear problem, but is required
more generally.

6 The superscript nl stands for nonlinear and serves to distinguish 7]“1 from linear damping that will be added
later.



where R (1) = H(7) is Green’s function for the linear dynamics. Thus the quasilinear
approximation is causal but otherwise constant. This unfortunately leads to a severe pathology
for the predicted damping:

L = /OoodszL(?) - /Oooa?@iol)@ - {go Eg S 83 (20)

which is a discontinuous and singular function of 3. Such discontinuities and infinities are always
signatures of trouble with the underlying approximations. (In this case, the difficulty is that
R© does not decay in time.) The infinity arising at lowest order precludes further perturbation-
theoretic development, since all higher-order terms would be built on the infinite lowest-order
result and would have indeterminate value.
To circumvent this problem, one can regularize the infinity by adding some linear damping v
to Eq. (13):
o) + vip = =i (21)

Now the linear Green’s function is R (1) = H(r)e ™", so

= [ CarsQr) = g2, (22)
0

which happily is a continuous function of 5. With perturbation theory regularized, one can now
proceed order by order and eventually sum through all orders. Although that process is still
complicated [18], one crucial part of the result can be shown to be the replacement of RO by R,
ST

ie.,

>'(7) ~ B2R(7). (23)

Although R is not yet known, it has been assumed to obey the Markovian dynamics 0; R+ v R+
n"R = §(t — t'), so one has the formal solution

R(r) = H(r) exp[~(v + n")7]. (24)

Upon calculating the total damping rate by integrating Eq. (23), one obtains the self-consistent
equation
nl 52
n= m, (25)
which is a nonlinear algebraic equation that can be solved for n"!. Although that can obviously
be done exactly, it is more instructive to note that the equation remains well behaved in the
limit v — 0 (recall that v was inserted only as an artifice to regularize an infinity), in which
case one easily finds n™ — 3. It is remarkable that this damping rate is finite in the limit v — 0
although it was infinite in the lowest-order theory with v = 0.
It is important to note that the renormalized solution exhibits anomalous scaling in its
dependence on the advection level 3:

nl _ JB%/v  (quasilinear theory),
= {ﬂ (renormalized). (26)

Furthermore, the correct exponent of 3, namely 1, cannot be predicted from dimensional
analysis. Given that the problem is characterized by the two frequencies v and 3, dimensional
analysis predicts merely that n™ o v¢3? with a +b = 1. Only the renormalization, which

" This is the direct-interaction approximation for the stochastic oscillator [18].



formally involves consideration of an infinite number of terms, is capable of selecting the proper
expom—:-nt.8

A fundamental advance in the theory of renormalization was made by MSR [31], who
generalized to classical statistical dynamics important generating-functional methods of
quantum field theory (the Schwinger formalism [57, 58]). The basic observation is that all
statistical observables depend functionally on external sources. Even in cases in which such
sources are absent in the true physical situation (consider the Vlasov equation, for example),
it is useful to introduce them anyway because (i) the cumulants can be shown to be functional
derivatives of a certain generating functional with respect to the sources; and (ii) the induced
dependencies on the sources can (often) be used to deduce, via a functional chain rule, functional
relations among the observables themselves. Those persist even in the limit of vanishing sources.
One is led (see Sec. 2.6.2) to a system of coupled Dyson equations for C' and R (plus the exact
equation for the mean field). Approximation comes in the truncation of functional equations for
the constituents of £, At lowest order, Kraichnan’s DIA emerges. Of course, understanding the
nature of the approximation is quite nontrivial. Martin has stressed that the MSR formalism is
“not a panacea” [59]. However, the basic point remains that by proceeding in that way one is led
to a self-consistent expression for the memory function. Note that giving any nonzero value at all
to 2" broadens the resonance predicted by the zeroth-order Green function and thus subsumes
the effects of an infinite number of terms. That is, instead of writing R = [(R(©)~1 4 x1]-1,
which cannot be approximated as R(® near (R(?))~! = 0, one considers R~ = (R(®))~1 4 xn!
and approximates . This philosophy was well explained in the clearly written and highly
recommended introduction to the original paper by MSR [31].

2.5. The role of dissipation

In the previous example, dissipation was introduced only as a way of regularizing a divergent
perturbation theory. But in classical physics dissipation is virtually always present on physical
grounds, the basic paradigm being the Navier—Stokes equation, which contains the viscosity
(momentum-diffusion) term V2. In such situations the statistical dynamics contain a built-in
(generally short-wavelength) cutoff. Thus the MSR/Dyson equations make no reference to a
cutoff, and the focus of classical renormalization shifts to effects of statistical self-consistency.

It is important to distinguish dissipation of the primitive amplitude from dissipative effects
that emerge after statistical averaging. The diffusion equation (7) is dissipative, yet it arises from
a conservative amplitude equation. The same is true for the ™ calculated for the renormalized
v = 0 stochastic oscillator.

Unfortunately, dissipation in the primitive amplitude equation is incompatible with many
of the elegant tools derived for conservative systems, including Hamiltonian formulations and
construction of equilibrium ensembles using notions of Gibbsian statistical mechanics [60, and
references therein]. With characteristic insight, Prof. Kaufman made a start on this problem
with his 1984 introduction of dissipative brackets [61] (see also the related work of Morrison
in Ref. 62 and these Proceedings.) That interesting formalism is well suited to discussion of
Markovian kinetic equations such as the Fokker—Planck equation with the Landau collision
operator. However, it has not as yet been shown to coexist gracefully with the more fundamental
non-Markovian statistical formalisms. Thus, the techniques that so far have proven to be most
useful for the general turbulence problem, which is typically forced and dissipative, have a
different flavor than most of the basic tools developed by Kaufman and his collaborators.

8 One is led immediately to the proper answer by arguing that the ultimate statistics should not depend on v at
all. (Indeed, v was absent from the original equation.) But in the Markovian perturbation theory for the example,
it is impossible to ignore v and deal with finite terms. A belief that the anomalous exponent of 1 is trivial for
this problem amounts to an acceptance of the need for renormalization, which is exactly the point.



Nevertheless, some of those ideas and results are hiding in the general equations of classical
statistical dynamics [31], as we will see in the next section.

2.6. Renormalized spectral balance, ponderomotive effects, and the search for a renormalized
K—x theorem

In this section I discuss how ponderomotive effects are embedded in the general renormalized
equations of plasma turbulence, and I present some initial steps toward the possible derivation
of a so-called renormalized K—x theorem. In the interest of full disclosure, I must state at the
outset that, although various nontrivial details have been worked out, true understanding has
not yet been achieved and it is far from obvious that a renormalized K—x theorem even exists.

2.6.1. The classical K—x theorem. At the time I visited Berkeley in the middle 1970’s,
one of Allan’s many interests was ponderomotive force, especially its systematic derivation
from Hamiltonian- and Lie-theoretic perturbation methods. Dewar had already published his
fundamental paper on “Oscillation center quasilinear theory” in 1973 [4] and had followed that
up with his ambitious 1976 paper on renormalized perturbation theory [5], in which he gave an
important operator generalization of Deprit’s Lie perturbation method [63]. Shortly thereafter,
Cary and Kaufman published their work on “Ponderomotive force and linear susceptibility
in Vlasov plasmas” [6], in which the so-called K—x theorem was first stated; a concise proof
was soon published by Johnston and Kaufman [39]. That theorem predicts a specific and
simple relation between (i) the second-order ponderomotive Hamiltonian K @) for a particle in
a slightly inhomogeneous but rapidly oscillating wave field, and (ii) the (linear, or lowest-order)
susceptibility x(©). The theorem can be stated quite generally, as was elegantly demonstrated
later by Kaufman [64], but I shall just discuss a simple special case for illustration. Consider a
temporally sinusoidal electric field E,, (). With (X, P) = I" being the oscillation-center position
and momentum, Cary and Kaufman quote the theorem in the form

KO(T) = /d xdx' B (x ‘5"()( /)-Ew(m’), (27)

where f is the background distribution function. For the special case of electrons with charge e
and mass m in an electrostatic wave of wave number k with weakly inhomogeneous field intensity
Ew(X) = |Epo(X)]?, the result is

e? Ero(X
KO = <_> ok -(v(I)D)P' (28)

The Hamiltonian equations of motion

0K .
- X 29
0K .
—-—— = P=F 29b
X (29b)
thus identify the ponderomotive force on the oscillation center as F' = —V K. Here the gradient

operates on the weak inhomogeneity of the field intensity £.

It is interesting to inquire how this result relates to statistical turbulence theory. That there
should be a connection is obvious on physical grounds: ponderomotive force is a real physical
effect that should not disappear when a single coherent wave is generalized to an inhomogeneous
ensemble of turbulent waves. More abstractly, one is motivated by the observation that the
forms of the statistical turbulence equations do not depend on the precise way in which the



averaging procedure (...) is implemented. Since the oscillation-center transformation, which
systematically removes rapid oscillations, is a kind of averaging operation, one may expect that
ponderomotive effects are included in the general statistical theory, and this will be seen to
be true. On the other hand, no statistical averaging is done in the conventional derivations of
either the ponderomotive force or the linear susceptibility, and that is a great simplification. In
general, the presence of nontrivial statistical correlations at higher orders greatly complicates
the general discussion, and a significant lack of complete understanding of those correlations
turns out to be the sticking point in the derivation of a renormalized K—y theorem.

2.6.2. General structure of the statistical theory of Vlasov turbulence; the renormalized dielectric
function. Unfortunately, the general statistical theory of the Vlasov equation is somewhat
tedious. It must, of course, be compatible with weak-turbulence theory [12] (which can be
derived by a regular-perturbation-theoretic treatment of the Vlasov equation [14]), including
at lowest nonlinear order wave-wave-wave and wave—wave—particle interactions. In addition, it
must be renormalized in order to deal with resonance-broadening effects. Most of the details
[28, 40] cannot be discussed here.

However, the general structure of the Dyson equations that couple Vlasov response and
correlations is reasonably straightforward and instructive to consider. I shall first discuss the
structure for a generic quadratically nonlinear equation of the form

0 (1) = L(1,29(2) + 5M(1,2,3)0(2)4(3), (30)

where a numerical argument refers to a set of dependent variables such as 1 = {x1,v1,51,%1}
(s being a species label); summation/integration over repeated arguments is assumed. The
Vlasov equation (¢» — f), which possesses the quadratic integro-differential nonlinearity
(g/m)E - O,f, can be written in this form by an appropriate choice of mode-coupling

coefficient M. To do so, I consider electrostatics for simplicity, write E(1) = E (1,2)f(2), where

E is the linear operator that inverts Poisson’s equation,’ and adopt the shorthand notation
8 = (¢/m)0y. Then

Myasoy(1,2,3) = E(1,2) - 8:6(1 — 3) + (2 < 3). (31)

(Symmetrization is possible here because the electric field is allowed to self-consistently respond
to changes in the distribution function. It is not permissible in a passive problem in which the
field is specified; see the calculation below.)

Equation (30) generates the exact equation for the mean field

0} (1) = L(L2)()(2) + TM(L2,3) )W) + TM(1,23023),  (32)

where C(1,1") = (01¢(1)0¢(1")) and §¢p = 1) — (b). From the exact equation for the fluctuation,
05 = Low + M{)5h + S M50 — O), (33)

one sees that the linear operator is modified by a mean-field term: L — L = L+ M(v). [For the
self-consistent Vlasov equation, the effective linear operator is L = —(v-V + E -8+ 0f - E)/]
Then the Dyson equation for the two-point response function R(1;1’) has the form

R(1;1") — LR+ X(1; T)R(T;1") = (1 — 1'). (34)

9 Specifically, Eg ., (s,v;5,T) = —(4rik/k?)(7iq)s, where 7 is the mean density.



Y is a generalized “turbulent collision operator”; it describes the effects of resonance broadening,
self-consistent polarization processes, (part of) nonlinear mode coupling, etc. Its precise form
depends on the particular statistical closure, such as the DIA; it is a nonlinear functional of C'
and R itself.'0 Tt is frequently useful to think of ¥ as a generalized Fokker-Planck operator that
contains turbulent diffusion and drag terms [28, 65].
Response R is self-consistently coupled through ¥ to fluctuations C'. The Dyson equation
for C is R
0,0(1,1") - LC +2(1;1)C(1,1") = F(1,1)R(1';1). (35)

Here a new function F' (also functionally dependent on C' and R) has been introduced. Upon
observing that the operator on the left-hand side of Eq. (35) is Green’s function for Eq. (34),
namely R~!, the C equation can be written in the symmetrical form

C = RFRT, (36)

where T denotes transpose. This is one form of the spectral balance equation for turbulence. The
positive-definite function F may be thought of as the covariance of a certain internal incoherent
noise arising from the nonlinearity. That forcing competes with coherent nonlinear damping
(the ¥ term in the R equation); the resulting balance sets the fluctuation level C. In addition to
the detailed review of spectral balance in Ref. 28, further pedagogical words about the spectral
balance equation can be found in the author’s recent review article on gyrokinetic noise [45].!!

For nonlinear fluid equations (e.g., the Navier-Stokes equation or the Hasegawa—Mima
equation), the Dyson equations can be studied as is. The most sophisticated yet (sometimes)
workable approximation is the DIA; Markovian closures such as the EDQNM exist as well.
Application to the Vlasov equation requires further discussion because of the multi-level nature
of the physics: the fundamental random variable (the Klimontovich distribution function) lives in
a 6D phase space, but the electric field, which defines the nonlinearity, lives in the 3D x space.
This leads to a decomposition of the damping operator ¥ into two parts: one that applies
the E operator; and one that operates directly on a phase-space function. I shall use the
notation ¥R = S@ R+ (OAf)- ER. (The significance of the g superscript will become apparent
momentarily.) The symbolic notation &Af denotes a certain combination of nonlinear terms
[28] whose details will not be required here. The notation has been chosen'? such that this latter

combination formally adds to the mean-field contribution 8f - ER; I write 9f = 8f + OAFf.
Thus, the R equation for electrostatic Vlasov turbulence becomes

(0 +v -V +ISNR(@,v, s, t;x', 0,5 t')+8f - ER=0(t —t')(x — =) d(v — v )os . (37)
The signficance of this form is that it closely resembles the linearized Vlasov equation
(8 +v-V)f+8f0.6E =0, (38)

the differences being the addition of a resonance-broadening term @) and the generalization
f© — F. This strongly suggests that a renormalized dielectric D can be defined by following
the same operational procedure used for calculating the lowest-order dielectric from Eq. (38). If

Tn the general MSR formalism, a third (vertex) function I' (actually a matrix with three independent
components) is introduced and closures are characterized by the approximations made to the functional equation
for T'. Tt is not necessary to delve into the details [28] here.

' A forthcoming paper [66] (see Sec. 2.7 of the present paper) contains a useful appendix on spectral balance for
a particular model of passive advection.

12 The notation disguises the fact that AFS is not actually the velocity gradient of a scalar, but rather is the
divergence of a (wave-number-dependent) tensor.



g is the renormalized particle propagator, defined by omitting from Eq. (37) the self-consistent
response term Of - ER, then one has schematically

g 'R+0f -ER=1. (39)

(I stands for the appropriate delta functions.) The solution of this equation is

~

ER = D 'Ey, (40a)
R = g-gdfD' Eg, (40b)

where the renormalized dielectric function is
D=1+ Eg-d7J. (41)

This has precisely the form of the well-known lowest-order (electrostatic) dielectric

/ k- a”f (42)

w—k-v+ie v+ e

DO (k,w) = 1+Z

with the replacements ¢(® — g and 8f(©) — 8F. Here ¢(? is the linear particle propagator

gz, v,s,t;2' v, s, t') = H(r)d(p—vr)d(v — V)05 57, (43a)
0) d(v —v')ds

g s = 43b
gkw(vasavvs) —i(w—k-v—i—ie)’ ( )

where p =  — x’ and the Fourier transforms are with respect to p and 7.

Although this approach to the form of the nonlinear dielectric function is suggestive, it may
not be apparent that the resulting form (41) is compatible with the conventional definition of a
dielectric function that is made in linear response theory. The formal proof was first given by
DuBois and Espedal [40]; an alternate derivation can be found in Ref. 28, Sec. 6.5.2, p. 165.

It is important to stress that the previous discussion applies to dynamically self-consistent
problems in which the particles are themselves responsible for the fields: E = Ef. One can
also consider problems of passive advection (usually called stochastic acceleration [67] in the
Vlasov context), in which the electric field is statistically specified. That has consequences for
the forms of both the primitive amplitude equation and the renormalized Dyson equations. One
is no longer allowed to write E = Ef, since E is imposed. This implies that the symmetrized
form (30) may not be used. Because self-consistent response is forbidden, various “polarization”
effects [28, 65] are absent. Nevertheless, a nontrivial, renormalized particle propagator g does
exist in the passive problem. One can think of g as the conditional PDF of finding a test particle,
moving under the influence of a random electric field, at phase-space point {x, v} at time ¢, given
that it was at {«’,v’} at time t’. In the next section I will show how to extract ponderomotive
force from the Dyson equation for the passive g.

2.6.3. Ponderomotive force effects from the quasilinear theory of the weakly inhomogeneous
particle propagator. The nonlinear dielectric might provide one piece of a renormalized K—y
theorem. Before attempting to draw any such connection, however, one must identify a statistical
version of ponderomotive force. Because the self-consistent problem is quite complicated, I shall
here consider stochastic acceleration of a test particle. (This is consistent with the fact that
the original K—x theorem assumed a given wave field.) Because such a test particle would
respond to ponderomotive force, one should examine the nonlinear contributions to g in a



search for a statistical expression of ponderomotive effects. That is, one must study ().
To illustrate the relevant issues with a minimum of complexity, I shall proceed by using the
direct-interaction approximation. Of course, this omits a host of statistical effects (contained in
the vertex renormalizations that are ignored in the DIA) and therefore precludes a discussion of
complete generality. I shall also restrict attention to a single species.

It can be shown that in the passive DIA one finds

29 (1,1) = -8y - g(1,2)E(2,1) - 826(2 — 1), (44)

where £(1,1') = (JE(1)6E(1')). The presence of the two velocity derivatives identifies 3(9)
as a generalized diffusion operator. To get a feeling for its content, first assume that spatial
homogeneity and temporal stationarity prevail (on the average), so that all two-point functions
depend on only the differences of their spatial and temporal arguments. Those functions can
then be represented in Fourier space; one finds'3

- dp dwp —
S (v;0) = ~8; - / ﬁ#’ Tho— oo (V1 02) oy - Db (03 — ). (45)

This can be reduced to the familiar quasilinear diffusion operator by (i) passing to the long-
wavelength limit |k| < |p| and the low-frequency limit w < wp; (ii) assuming that the imposed
field spectrum is wave-like: Ep, = 27ERI(w — Q), where Q is a specified frequency; and
(iif) approximating g by the unperturbed propagator g(® [which contains §(v; — v5)]. Then

) (v;7) ~ -8, - </ % T6(Qp — P - v)g,,> -816(v; — D). (46)

The parenthesized term is the well-known quasilinear diffusion tensor D(v) (the significance of
which was elaborated so well by Kaufman [2]).

Of course, a statistically homogeneous formalism cannot be expected to describe
ponderomotive force; one must allow for weak inhomogeneities. The most elegant treatment of
that topic involves the Weyl calculus, reviewed by McDonald [7]. To lowest order, however, the
formalism is well known [68] and can be worked out straightforwardly [69]. For simplicity, ignore
time dependence temporarily and write an arbitrary two-point space-dependent function A
in terms of sum and difference variables: A(z,z') = A(z — 2’ | 3(z + @) = A(p | X);
one may Fourier transform with respect to the difference argument. To first order in a weak
inhomogeneity, the operation [dI A(1,1)B(1,1") = (A x B)(1,1’) can be written as

(Ax B)u(X) ~ Ax(X)Bu(X) + 5i(4, B), (47)

where

(ABy =04 9B 0k 0B _ 0 (203) ) <203)' (48)

T 09X 0k 0k 0X 0X \ 9k) ok \ 0X

This is promising because gradients with respect to the weak inhomogeneity have appeared.
When time dependence is included, the representation generalizes to A(x,t,x’,t') = A(x —
@' t—t | i(x+a),3(t+1)) = Alp,7 | X,T). 1shall consider only steady-state turbulence,

13 One is presented here with a classic collision of notation. A common convention in homogeneous statistical
theory theory is to consider wave-number triads called (k,p,q) with k + p + ¢ = 0. Unfortunately, use of p
here would preclude its use as a canonical momentum, to which I will also need to refer later. Therefore, in the
wave-number context I shall use p instead of p; hopefully that will not be confused with a canonically transformed
momentum.



so no dependence with respect to 1" appears and temporal corrections to the Poisson bracket
vanish. The formalism therefore remains correct if all AB products in Eqs. (47) and (48) are
generalized to include a convolution in time difference 7 (or, of course, simple products of A\kw
and Ek,w)- Thus, consider

—

O0r k(X ,v,7;v") + ik - vgg +v - Vi + (29 *g)k(X,'v,T;v/) =§(1)d(v — '), (49)

where

L —

(20 % g) (X, v,750) =~ /0d?(f?;g)(X,v,F;ﬁ)ﬁk(X,ﬁ,r—F;v')

_1{z<g (X,v,7:9), 55(X, 5,7 = 50)}),  (50)

and focus in particular on the Poisson-bracket terms. To isolate specific effects related to force,
one may examine the time development of (v)(p,7) = [dv[dX vg(p,7,v | X,v’). In linear
theory (i.e., with the substitution ¢ — ¢(?)), one would find (v) = H(7)v'8(p — v'7), which
describes free-streaming propagation of a localized pulse. In general, one has

—

OT(/'U\>,c +ik - Py + /d'v/dX (B0 x g) (X, v,730") = 6(7)d(v — V), (51)

where P = (vwv). The last term on the left-hand side can be interpreted as —F /m, where F is
the averaged effect of nonlinearity-induced forces. Eventually the limit & — 0 will be taken, so
the ik - P term will be irrelevant.

In interpreting Eq. (51), one must not forget that it describes the temporal development of
the mean particle velocity. The statistical formalism is impartial; it will report correct statistical
relations for any consistent set of independent variables in which the primitive amplitude
dynamics are formulated. Since sophisticated variables such as oscillation-center coordinates
and momenta are not known until the nonlinear dynamics have been examined, it is usually
the original particle coordinates that are used.'* However, in perturbation theory the particle
velocity differs on the average from the oscillation-center velocity by a second-order correction.
I will return to this point after working out the predictions of Eq. (51).

Before considering the most general renormalized case (in which one must deal with the
fact that ¢ is nonlocal in velocity space due to resonance broadening), let us again make
assumptions (i) (wave spectrum) and (iii) (¢ — ¢(?)) above. Also consider times long compared
to a characteristic autocorrelation time of the turbulence, so that a Markovian approximation
is valid. That is, upon writing out just the temporal arguments of the required convolution, one

" /on?z(g)(F T—7) </ dr 9 (7 )9(7)225209(7)' (52)

Having performed the appropriate coarse-graining, one may obtain a definite answer by
evaluating the nonlinear terms at 7 = 0. The nonlinear contributions associated with weak
inhomogeneity are then

Fjm~ i [av [ax 00, 8‘7 6o W)Ep- 0 Vis(r =0)],  (53)

where the second (conservative) form of Eq. (48) was used and the 9/0X = V was integrated

away; ﬁ,(fz)(v) denotes Eq. (43b) sans the delta function in velocity. Both velocity derivatives

' But see Ref. 5 for some nontrivial generalizations.



can be integrated by parts, as can the V

Fin=yi [0 [ax [ 2 ( 050 0, (0) €51 300 (54)

(A term in Oggg vanished at 7 = 0. The more general significance of that term will be disucssed
elsewhere.) One has 80/9\120—)1—),—95 = (-1)"Y(k —P)/[-Qp — (k —P) - v]2. Now the 9/0k acts
on two k dependencies: the k in the numerator, and the (k — p) - v in the denominator; call
those contributions F, and Fp. After evaluating them, take the limit k& — 0 in the coefficient
of gx(0). (This could not be done before the differentiation with respect to k was performed.)
One obtains F, = (F,), where the average is with respect to gg—o(v,7 = 0;v’) and

(55 [ m o) )

For a wave field localized to a single wave number p,, (and its negative), one obtains

F, = -VK, (56)

with
62 8170

"k m (Qp, —Po - v)?*
This is the standard, well-known expression for the second-order ponderomotive force on the
oscillation center; cf. Eq. (28).

Remaining is F}, which will be argued to be related to the second-order difference between the
particle velocity and the oscillation-center velocity. To show that, I briefly review the standard
development of the Lie perturbation theory for the oscillation-center canonical transformation.
Recall [70, 71] that the transformation between old coordinates z and new coordinates Z is
generated by Z =Tz, where T'=Ty+ 11 + 15 + ---. One has

(57)

TO = 1, (58&)

T = —L, (58b)
1 1

T2 = —§L2+§L%, (58C)

where the L’s are defined in terms of the Poisson bracket with the generating function w:
L,, = {wy,,-}. For example, the oscillation-center momentum P is obtained from the laboratory
momentum p by

P:p—|—P1(z)+P2(z)—|—---, (59)

where, e.g., P, = T,,p. To avoid secularities and vitiation of the perturbative expansion, the w,,’s
are constructed to have zero average. Then

(P)=p+ (P, (60)

where
(Po) = (I, (61)

After spatial integration by parts under the average, this can be rearranged into

1 2 - 1 8 8w1 8w1
§<L1>p_§8_p.<8—wa—m>' (62)



The right-hand side of Eq. (62) can be evaluated explicitly by recalling that
(O +v - V)wr = —qp(z,t). (63)

It is left as an exercise to complete the calculations and show that the contribution (Pj)
is precisely recovered by the Fj term that was obtained above from the expansion in weak
inhomogeneity.?

2.6.4. The possibility of a renormalized statistical K—x theorem. The above manipulations can
be repeated without the quasilinear approximation ¢ — ¢(©, and one is led thereby to DIA-
renormalized expressions for the ponderomotive evolution of (v) due to weak inhomogeneity. 6
The ease with which those generalizations follow from the renormalized theory makes a strong
argument in favor of MSR-style renormalizations; no series need to be summed through all orders.
The formulas naturally resolve the resonant-particle singularity. There are likely practical
consequences to such renormalizations; however, those will not be pursued here.

Now consider the possibility of a renormalized K—y theorem. Of course, no such theorem
is required in order to evaluate the renormalized ponderomotive effects as above, but if such a
theorem did exist it would imply interesting consistency constraints on approximations made to
the dielectric function and the turbulent collision operator. However, one should probably not
compare apples (passive advection) with oranges (self-consistent dynamics). I have shown how
to work out renormalized ponderomotive effects from the ¥(9) appropriate for passive advection.
The dielectric D, however, is relevant to self-consistent problems. For passive problems, R
reduces to g and D — 1. That is not helpful in formulating a K—y theorem.

Nevertheless, suppose that one persists in attempting to derive passive ponderomotive force
from the expression for the renormalized dielectric. Note that the construction g 8 appears in
the general forms of both D and the renormalized $(9) operator. A reasonable first guess for a
statistical Ky theorem might then be!” schematically

F=-V(KE), K=-——. (64)

However, difficulties emerge immediately. The averaging required for the renormalized dielectric
is over not the mean distribution function f but rather the effective (wave-number-dependent)
distribution f. It is unclear what functional differentiation with respect to f really means,
and I have noted that the notation 8 Af is symbolic, being the velocity divergence of a tensor
rather than literally the gradient of a scalar. Beyond the DIA, renormalized vertices that I
have not discussed provide further essential complication. And if one contemplates deriving
ponderomotive effects from the fully self-consistent problem, one must deal with the fact that a
functional derivative with respect to the background distribution function (or any generalization
thereof) would act on not just the explicit distribution in D but also the implicit $(9) in g.
The most immediate unresolved issue is that the fundamental significance of the turbulent
correction A f is not understood even after three decades of research on MSR-level renormalized
plasma turbulence theory.'® Its contributions to weak Vlasov turbulence theory are understood

5 As a hint, note that d€(X)/dt =V - VE.

16 One must deal with the fact that the resonance-broadened g is nonlocal in velocity space. Thus Jdvv Oy -
Je—p(v;0) - O gi (T;v") = [dv [O5Gk—p(v; D)9k (T; v'); the last derivative is on the second velocity argument.

17 Notice that the spatial gradient and the intermediate velocity derivative that are performed operate on the
implicit £9 that renormalizes g, not just merely the “obvious” dependencies.

8 This remark is slightly misleading. To the best of my knowledge, no one has been continuously working on the
physics of Af since the initial flurry of activity in the late 1970’s by such people as DuBois and Espedal [40] and
Krommes [41, 72].



in the narrow sense that its relationships to specific terms in the third-order perturbative
expansion of the Vlasov equation [28, 40, 72| have been identified. This means that in principle
some of its connections to higher-order Hamiltonian/Lie perturbation theory are available;
cf. the derivation of weak-turbulence effects by Johnston and Kaufman [39]. However, deep
understanding of Af as a “renormalization of the mean distribution function,” as this author
has loosely suggested [41], is lacking [40]. The origins of Af lie in statistical correlations
arising in the rigorous theory of infinitesimal response, which is used to define the renormalized
dielectric function. As was described in Ref. 28, Sec. 6.5.2, p. 165, in order to determine the
mean response to a small external potential one must evaluate <R af > where R is the random
response function and f is the random distribution function. If that average would factor, one
would have (RAf) — RO f, whereupon it is easy to show that one would obtain an expression
for the renormalized dielectric D that has exactly the same form as the linear dielectric D (©)
except that ¢(© — ¢ and fo — f. Functional differentiation of that form with respect to f
would at least be well defined. However, the statistical correlations between R and f are real
and produce the A f correction,' which is required in order to produce the correct renormalized
normal modes of the turbulent plasma and for a proper description of nonlinear mode coupling.

From the linear response theory cited above, one can show that Af is related to the
response function G4__(1,1’,1”), which describes the response at point 1 due to infinitesimal
perturbations at both 1’ and 1”. What is missing is a proven simple connection between G, __
and the renormalized ponderomotive effects in which we are interested. If there is such a
connection, it will likely not be deduced by detailed examination of renormalized closures such
as the DIA, as I have attempted to do above, but rather from a new understanding of the
general structure of the renormalized theory. Another way of saying this is that the original
K—x theorem follows immediately [39] from a relation between the second-order wave—particle
interaction energy (which involves the first-order four-current and the first-order four-potential)
and the second-order oscillation-center Hamiltonian. We have as yet no analog of that elegant
construction in the renormalized theory. Note that the statistical correlations responsible for A f
do not exist between the first-order quantities.

The preceding discussion illustrates both the strengths and the weaknesses of statistical
turbulence theory. On the positive side, formal renormalization a la MSR seems to effortlessly
effect a statistical averaging that mirrors the Hamiltonian oscillation-center theory, and it deals
with renormalized propagators from the outset. It also has great generality, dealing with
interactions between scales of all sizes, including comparable ones. On the negative side,
that same generality makes it difficult to see the forest for the trees, i.e., to distill specific
physical effects from the complicated mixture of nonlinear statistical couplings. Furthermore,
the Hamiltonian properties of the nonlinear interactions (if they exist??) do not appear to be
explicitly used in any obvious way.

One is left with the uneasy feeling that some important conceptual understanding of the
statistical theory remains to be achieved; certainly further work remains to be done before
a renormalized K—y theorem is proven, if indeed such a theorem exists at all. It is very
likely that known results from Lie methodology and the other early work of Kaufman and
his collaborators will provide important inspiration and guidance in any quest for deeper
understanding. Unfortunately, the camps of statistical turbulence theory and of Lie perturbation
theory have been only weakly coupled over the years. It would certainly be beneficial if that
situation were corrected.

19 9ome terms in that correction exist even for passive advection.
20 Note that the general MSR methodology does not require that the nonlinear term in the primitive amplitude
equation be derivable from a Hamiltonian formalism.



2.7. Application of renormalization to the theory of stochastic magnetic fields

A problem of considerable interest to magnetic fusion is the role of stochastic magnetic fields.
Broken magnetic flux surfaces can lead to enhanced transport or even disruption of the discharge.
The subject has a long history that cannot be reviewed here; see Ref. 73 for some of the early
theoretical references.

A very recent calculation?! involving stochastic magnetic fields [66] marries a variety of the
analytical tools for turbulence with the very practical problem of the calculation of plasma
equilibria in toroidal devices. The methodology involves the extension of quasilinear theory
(QLT) to a periodic geometry. In view of Prof. Kaufman’s very significant work on QLT [2],
especially his formulation of QLT in axisymmetric toroidal configurations [3], the calculation is
quite relevant to this Symposium.

The usual MHD equilibrium condition?? j x B = VP predicts that B - VP = 0. For
a system with good magnetic flux surfaces, this merely states that the pressure gradient is
perpendicular to the flux surface. However, for regions with stochastic magnetic fields (of interest
for tokamaks with ergodic limiters and for the edge regions of high-3 stellarators), the condition
is conventionally interpreted to mean that the pressure profile is flattened. Nevertheless,
nonvanishing pressure gradients are observed in both experiments and simulations [75], so a
more refined description is required.

Reiman et al. [75] observed that flattening need not occur in the presence of weak flows or an
anisotropic pressure tensor. Furthermore, they outlined a hybrid analytical/numerical procedure
wherein the magnetic-field configuration could be calculated without explicit reference to those
effects. One begins with the quasineutrality condition V - 37 = 0. That can be rewritten as

B-Vu=-V-ji. (65)

where p1 = j)/B; this is a magnetic differential equation for u (j . is supposed to be given).
Given p, one can then proceed to solve Ampere’s law for B, for example by using the PIES code
[76].

Let the magnetic field be written as B = By + d B, where By possesses good flux surfaces
and dB is a stochastic perturbation. Equation (65) then takes the form

By-Vu+0B -Vu=-V-j,. (66)

In coordinates for which the unperturbed magnetic lines are straight, one has

0 0
BO'V:B(? (8—¢+L%>, (67)

where 6 and ¢ are the (generalized) poloidal and toroidal angles and ¢ is the rotational transform.
With the convention p ~ exp(im# — in¢), Fourier series analysis of Eq. (67) leads to

(B)'By - Vi — —i(n — tm)fimn, (68)

demonstrating resonances at each of the rational surfaces. Those resonances are broadened
by the stochastic component of the field. To treat the broadening quantitatively, one may
think of 0 B as a random variable; then Eq. (66) becomes a multiplicatively nonlinear stochastic
differential equation to which the usual statistical techniques may be applied. The problem is
difficult because §B is self-consistently determined in terms of u through Ampere’s law. As a

21 So recent, in fact, that the research was not performed until well after the KaufmanFest.
22 There seems to be no area of plasma physics that Prof. Kaufman has not touched. One of his earliest papers
dealt with stability of a “hydromagnetic” equilibrium [74].



first step, Krommes and Reiman [66] (KR) ignored that complication and treated Eq. (66) as
a problem of passive advection. The resulting statistical closure contains the usual magnetic
diffusion coefficient D,, (KR worked in the quasilinear limit), but also involves additional terms
in principle because the source term —V - j | is statistically correlated with § B. This point can
be illustrated with the aid of a model, as thoroughly discussed in Appendix A of Ref. 66. In the
end, the additional terms can be argued to be small, so one is left with a resonance-broadened
magnetic differential equation of the form

By - V{u) = Dy V(i) = =V - (j1). (69)

(The notation “D,,, V?” denotes a nontrivial operator, since the magnetic coordinates appropriate
to the underlying flux surfaces are not orthogonal.)

This is not the end of the story. Equation (69) must be solved subject to the periodicity
constraints in a torus; that requires an interesting foray into the theory of periodic Green’s
functions (reviewed in Appendix B of Ref. 66). Furthermore, Ampere’s law requires the total
= {(u) + op, where du is the fluctuation about the mean. Of course, D,, incorporates mean-
square information about du, but that is not sufficient for the solution of Ampere’s law in a single
stochastic realization. To address this issue, it is convenient to formulate the statistical closure
in terms of a nonlinear Langevin equation. I will not describe the details here, since they are
thoroughly discussed in Ref. 66 (see also Ref. 28). I merely remark that the nonlinear Langevin
approach is undoubtedly the most intuitive formulation of the statistical closure problem, so it
is highly recommended for the connoisseurs.

It was already recognized in Ref. 73 that the problem of stochastic magnetic fields presents
an important venue for the application of statistical methods. The present calculation shows
that the esoterica of renormalization can lead to quite practical, even quantitative predictions.
Although this is well known in quantum electrodynamics, examples in plasma physics are
few. One is therefore encouraged to pursue related avenues that connect analytical theory
and experimental or simulation data. Some of those are described in the next several sections.

3. Tools for zonal-flow physics
The renormalized theory of spectral balance is quite general, but that is a weakness as well as a
strength since it treats all fluctuations on a formally equal footing. For example, in homogeneous
turbulence for which plane waves are sensible eigenfunctions, the theory describes coupling
between all wave numbers k = (kz, ky, k-), with no combination of Cartesian components being
singled out for special treatment. Physics considerations, however, may point to a preferred role
for specific k’s.

Consider drift waves, for example, which are very important in fusion-related microturbu-
lence. The classic drift wave has the dispersion relation

W*(k)

Qp = %)
§ 1+ k2 p?

(70)

Here the diamagnetic frequency is wx = k, Vi, the diamagnetic velocity is Vi = (ps/Ly)cs, the
sound speed is ¢s = (ZT,/ mi)l/ 2 (Z is the atomic number), the sound radius is ps = ¢s/we;, and
the density scale length is L, = (=0, In(n))~!. This wave is obtained from the assumptions of
fluid ions (w/kjvy; > 1) and adiabatic electrons (w/kjvee < 1). The k2 p? term describes the
shielding effect of ion polarization drift. If that is ignored, then the physics of the wave?3 is that

E X B advection rearranges the background ion density profile, creating a fluctuation in ion

23 For further discussion of drift- and zonal-flow physics, see a set of pedagogical lectures by Krommes [8].



charge density. That fluctuation is then neutralized essentially instantaneously by electron flow
along the magnetic field lines (adiabatic electron response).

Clearly adiabatic response fails when w/kjvie > 1. Such is the case for convective cells with
ky = 0. In toroidal geometry, for which magnetic field lines do not in general close on themselves
but instead ergodically fill a magnetic flux surface, the condition k| = 0 requires both k, = 0
and k, = 0. Thus wave numbers with k = (k;,0,0) have a special role. Note that electrostatic
potentials dependent on only the z coordinate give rise to E X B flows dominantly in the
y direction: Vg oc b X Vo ~ 2 X Vo = gy ¢/(z). Such flows are called zonal flows. In general,
they are sheared: ¢”(z) # 0.

It has come to be appreciated that the physics of zonal flows is very important in the
theory of tokamak microturbulence. (For a review, see Ref. 77.) From now on, I shall use
q = (¢4,0,0) for the zonal-flow wave number. Zonal flows do not directly tap the free energy
in the density gradient, since their diamagnetic frequency wx(q) o g, vanishes. They do not
respond adiabatically, but rather exhibit fluid response. They can be driven up by nonlinear
drift-wave—drift-wave interactions and can react back on the drift waves, both interactions being
described by special cases of the triad relation k4 p+ q = 0, where k and p denote drift waves.
For example,

(k;xa ky7 kz) + (kl‘ — 4z, _ky7 _kz) + (QSCu 07 0) = (07 07 0) (71)
~ S——
k P q

Because in general zonal flows are sheared and tend to be of long wavelength, they can shear
apart drift-wave eddies, which tends to suppress the fluctuations that are directly responsible
for the turbulent transport. Thus the presence of zonal flows can lead to reduced transport.

I shall discuss two calculations relating to zonal-flow physics, selected because they nicely
illustrate a variety of fundamental tools. First I will remark on the problem of the transition to
ion-temperature-gradient-driven (ITG) turbulence, in which the excitation of zonal flows plays
a key role. That transition can be addressed by bifurcation theory, an important tool in the
modern theory of nonlinear dynamics. Then I will mention facets of the calculation of the
zonal-flow nonlinear growth rate, which affords an opportunity to apply multiple-scale methods,
Hamiltonian methods for PDEs, and some interesting wave kinetics.

3.1. Bifurcation theory and the transition to ion-temperature-gradient-driven turbulence

I have remarked that zonal flows can shear apart drift-wave eddies, thereby suppressing them.
Perhaps the most dramatic example of this effect is the so-called Dimits shift, which arises in
the transition to ITG turbulence. In order to appreciate the Dimits shift, consider the most
naive paradigm for the onset of turbulent transport. Imagine changing an order or bifurcation
parameter € in order to bring a system from linear stability, through marginal stability at
€ = €, to linear instability. (e. can be chosen to vanish.) Naive arguments might suggest that
fluctuations, hence turbulent transport, should turn on as soon as € exceeds €.. In the ITG
problem, € can be taken to be a normalized temperature gradient, ¢ = R/Lp (R is the major
radius of the tokamak). The conventional scenario is then sketched in Fig. 3.

However, large-scale numerical simulations due to Dimits and collaborators [78] showed that
when collisions (which are weak) are neglected, the actual situation is more complicated. In
fact, the transport does not turn on until € exceeds some €4 > €.. The difference A = ex — €. is
known as the Dimits shift. By qualitative analysis of the simulation results, the Dimits shift was
understood in Ref. 78 to be due to the excitation of zonal flows, which then totally suppressed
the ITG modes for €. < € < ex. Further discussion and insights were given by Rogers et al. [79].

However, more can be done. In the systematic theory of nonlinear dynamics, transitions at
critical points such as € = €. are conventionally analyzed by means of bifurcation theory [80, 81],
so it is natural to ask [82] whether the Dimits shift can also be explained in those terms. Now if
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Fig. 3. Ilustration of the Dimits shift. (a) Naive expectation: heat flux @ should turn on immediately after the
threshold for linear instability is crossed. (b) Simulation result: turbulence and transport are suppressed in a
nonzero interval (the “Dimits shift”) above threshold.

zonal flows were not involved, the transition at ¢ = €, would be a conventional Hopf bifurcation,
in which a complex-conjugate pair of eigenvalues crosses the imaginary A\ axis. (Perturbations
are assumed to vary as e*.) If the bifurcation is supercritical, nonzero drift-wave activity (not
necessarily turbulent) would be expected for € just above €., but that is not observed. One must
rule out subcritical bifurcation, but in fact it is clear (as I will explain) that the standard theory
of Hopf bifurcation does not apply when zonal flows are involved.

To gain insight into this issue, Kolesnikov and Krommes (KK) analyzed a “simple” model of
ITG fluctuations. For the details, which are lengthy and nontrivial, I refer the reader to Refs. 83
and 84. Here I will just describe the qualitative situation, which I hope will argue in favor of
the use of fundamental and systematic analysis tools.

The basic model consists of two nonlinear 2D PDEs that couple the vorticity?* @ and the
pressure P. The nonlinearity is due to E X B advection. The system supports a linear ITG
instability for sufficiently large background temperature gradient. The zonal modes are assumed
to be undamped in order to make contact with the collisionless simulations reported by Dimits
et al.

KK worked in a finite-sized box, the radial width of which was intended to model the width of
a radial eigenfunction in the presence of magnetic shear. They imposed standing-wave boundary
conditions in the radial direction; that is the only place in which magnetic shear entered the
calculation. Periodic boundary conditions were used in the poloidal direction.

By Galerkin projection, KK reduced the problem to a system of coupled ODEs. They used
the minimum number of modes that leads to a well-posed problem. One satisfies the triangle
condition with modes (k;,ky) = (1,1), (1,—1), and (2,0). The latter (zonal) amplifudes are
real; the others are complex. Upon recalling that one has n = 2 coupled fields, one can count
the number of real degrees of freedom by 2n + 2n + n = 10. Thus one deals with nonlinear
dynamics in a 10D phase space.

In bifurcation calculations, progress is made by analyzing the dynamics on the center
manifold. That is the nonlinear generalization of the center eigenspace, namely the linear
subspace spanned by the eigenvectors with zero real parts at marginal stability. In a standard
Hopf bifurcation, the center eigenspace would be 2D. If there are no unstable eigenvalues
additional to the nearly marginal ones (in other words, the complement of the center eigenspace
is a stable eigenspace), the center manifold theorem [80, 81] states that near the bifurcation

24 Here the vorticity is the component of the curl of the E X B velocity in the direction of the magnetic field. In
suitably dimensionless variables, it can be written as @ = V3 ¢, where ¢ is the electrostatic potential. For some
pedagogical discussion of the vorticity in strongly magnetized plasmas, see Ref. 85, Fig. 2.
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Fig. 4. (Color online.) Movement of eigenvalues as temperature gradient passes through the threshold
for linear instability (9 — A). Red: marginally stable drift waves; blue: strongly stable drift waves;
yellow: undamped zonal flows.

point the nonlinear dynamics are attracted to a (curved) center manifold that is tangent to the
center eigenspace at the bifurcation point. This behavior arises because the modes in the stable
eigenspace are strongly damped, so rapidly relax and become adiabatically slaved to the center
modes.

Thus, a standard Hopf bifurcation is associated with a 2D center manifold. The two degrees
of freedom correspond to the amplitude p and phase # in a complex representation pe' of the
reduced dynamics.

In the present model, the bifurcation is more complicated because the center eigenspace and
the center manifold are 4D. This follows because each of the two (real) zonal modes that are
retained contributes a linear eigenvalue of zero. Thus, the center eigenspace looks schematically
like Fig. 4. If one ignores the drift-wave phase variable, the coordinate axes of the reduced phase
space can be taken to be the two (real) zonal amplitudes and the drift-wave amplitude.

The ultimate goal is to understand the time-asymptotic dynamics on the center manifold.
But to verify that one is on the right track, it is first useful to directly integrate the 10D system
for a parameter value just slightly above marginality. A snapshot of the result is shown in Fig. 5,
and a movie (movie234.mpg) is available with the online Proceedings. Those plot the dynamics
versus two of the eight drift-wave degrees of freedom (on the z—y plane) and one of the zonal
amplitudes (on the z axis). The phase point is projected at various time snapshots onto the
horizontal and two back vertical planes; it is also drawn in three-space, with various temporal
portions of the trajectory color-coded for easier visibility. It is seen that after an initial transient
the trajectory settles down to a regular motion that subsequently spirals into a time-independent
fixed point with zero drift-wave amplitudes but nonzero zonal amplitude, i.e., a pure zonal-flow
state. The post-transient regular motion is evidence of a center manifold. The interpretation
is consistent with our previous discussion: For arbitrary initial conditions that include excited
drift-wave amplitudes, nonlinearity drives zonal flows that react back on the drift waves and
ultimately suppress them entirely. This behavior occurs for a range of temperature gradients;
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Fig. 5. (Color online.) Projection of the 10D trajectory into the three-space with axes
(z,y,2) = (Imwi,1,Re P1,1,w2,0). The time-asymptotic solution is a pure zonal-flow
state.

that range defines the Dimits shift.

Analytically, one needs to (i) construct the center manifold; (ii) locate the fixed point; and
(iii) discuss the stability of the fixed point and thus determine A, the width of the Dimits
shift for the model. Construction of the center manifold is expedited by a projection method
described by Kuznetsov [81], in which a contravariant coordinate system is used to locate points
on the center manifold above the flat center eigenspace. (For a graph of this construction, see
Ref. 84, Appendix B, Fig. 12. The projection method does not require the initial diagonalization
of the linear matrix that was used in Ref. 80.) The construction is done perturbatively, thus
is restricted to small amplitudes and valid only locally. Surprisingly, the location of the fixed
point can be obtained analytically even though nonlinear algebraic equations need to be solved.
Many details of the calculations, together with caveats?® and lengthy discussion, may be found
in Ref. 84.

The significance of this analysis is that it uses a systematic perturbation method to analyze
a nontrivial and highly nonlinear dynamical problem. The reduction of a high-dimensional
dynamics to the substantially lower-dimensional motion on the center manifold seems to be very
much in the spirit of the calculations favored by Prof. Kaufman. Indeed, my initial introduction

25 A significant problem of the present method is the severe Galerkin truncation. One could retain more modes, but
then the center manifold becomes of higher dimensionality and difficult to analyze. Unfortunately, the predicted
Dimits shift depends on the truncation. It may be that an entirely different functional analysis is required to
properly calculate A. Certainly one desires an approach in which the influence of magnetic shear can be taken
into account more precisely. There is plenty of room here for future work.



to nonlinear dynamics came via the detailed study of Chirikov’s thesis in the reading group in
which I participated during my initial visits to Berkeley. (A subsequent additional important
influence was the review article by Treve [34] on the possible applications of nonlinear dynamics
ideas to controlled fusion research.) It is somewhat embarrassing that it took me almost 30
more years to accomplish a nontrivial calculation in nonlinear dynamics,?® but better late than
never.2” Serious analytical theorists should certainly be taught the rudiments of that field.

3.2. Wawve kinetics and the calculation of the zonal-flow growth rate

The bifurcation analysis emphasizes that zonal flows can suppress drift waves. However, although
I have not demonstrated it here, the 10D model is not sophisticated enough to describe steady-
state turbulence above the onset. There is considerable further work to do on “fundamental”
studies of nonlinear dynamical behavior in fusion microturbulence. But one still has the general
formalism of spectral balance in statistical closures. Here, I will discuss one aspect of that theory
as it pertains to the generation of zonal flows in steady-state turbulence.

When physics is adequately described by a scalar field such as the potential o, the general
form of the spectral balance equation is Eq. (35), which I transcribe here for a Markovian,
one-time description of convective cells with wave number q:

0Cq — 274" Cq + 2Renp' Cq = 2Fy, (72)
which contains as usual a coherent nonlinear damping 7]31 and an incoherent nonlinear drive Fy.
In principle, both of these terms contain self-interactions, i.e., triadic couplings among three
convective modes satisfying q + q’ + ¢”" = 0, as well as cross couplings between the convective
cells and other constituents of the turbulence such as drift waves. Now for nonlinearities involving
E X B advection, the mode-coupling coefficient includes a cross product: Mypq o< Z-p X q. This
implies that interactions between three zonal modes vanishes, since the wave vectors of all such
modes point in the £z direction and have vanishing cross product. There may be interactions
between zonal modes and other kinds of convective cells. Here, however, I consider the important
case where the zonal mode q interacts with two drift waves k and p. Specifically, I discuss the
calculation of the nonlinear zonal-flow growth rate 721 = —Re ngl due to that interaction.

Such a calculation was first attempted by Diamond and coworkers [89], who contributed
important insights. Their method of attack was wvia a postulated wave kinetic equation for the
drift waves as modulated by the presence of a zonal flow. That captures the right idea; however,
some of the details were either incorrect or unclear.

A serious attempt to understand the wave kinetic approach was mounted by Krommes and
Kim [69]; subsequently, further insights were gained by Krommes and Kolesnikov [90]. Those
works together provide an interesting and nontrivial tour through a variety of useful tools,
including renormalized statistical theory, Hamiltonian formulation of nonlinear PDEs, multiple-
scale methods, and an unusual application of wave-kinetic analysis.

The first calculation performed by Krommes and Kim was a direct derivation of 721 from
the Markovian closure theory of the generalized Hasegawa—Mima equation?® in the limit that
e = q/k < 1. In principle, this calculation is straightforward; one need “merely” write down the

26 Barly in my career I worked seriously on transport due to stochastic magnetic fields [73, 86], which required
understanding of Chirikov’s stochasticity criterion [71] and some issues relating to Kolmogorov entropy. However,
the focus there was on statistical dynamics, not nonlinear dynamics in the usual sense.

2T Examples of earlier work on bifurcations in plasmas include the papers by Hinton and Horton [87] and Horton
et al. [88], although I do not believe that the concept of a center manifold was mentioned explicitly in those works.
281n the derivation of the original Hasegawa-Mima equation, adiabatic electron response was assumed. That
is incorrect for convective cells, which exhibit fluid response. In the generalized Hasegawa—Mima equation, a
modified Poisson equation is used in which the electrons do not respond at all for k; = 0 modes. For further
discussion, see Ref. 69.



expression for 1731, simplify the mode-coupling coefficients for small €, and perform the indicated
wave-number integrals. The rub is that those integrals, when constrained by the triad relation
q + k + p = 0, are over unusual, noncircular domains in k space. Specifically, if q is fixed, the
tip of k and the tail of p are tied together, and that vertex is moved, then the vectors k and p
sweep out areas that are not simultaneously symmetrical with respect to the same origin. Thus
great care and cross checking is required, and the calculation took many months to complete.

One offshoot of this analysis was that the calculation of ,erlﬂ (done there in the plasma-physics
context of the anisotropic generalized Hasegawa—Mima equation) was shown to be closely related
to Kraichnan’s earlier pioneering calculations of eddy viscosity for the isotropic 2D Navier—Stokes
equation [33]. In fact, it was possible to formulate the plasma problem so that it embraced the
Navier—Stokes equation as well, so one could take the appropriate limit. Bringing the various
results into complete agreement provided an entirely nontrivial check on the calculations.

In the end, the formula for ’y{lﬂ is fairly simple and closely related to the result of Diamond’s
heuristic wave-kinetic analysis (with some important details corrected and clarified). It
is interesting to understand the underlying reasons why a wave-kinetic approach works in
this context. Lest the reader argue that this is obvious, I point out that the calculations
of fygl have been performed for homogeneous turbulence, for which gradients of the statistical
observables with respect to space vanish; the usual wave-kinetic analysis as applied to linear
wave propagation involves the Poisson bracket {A, B} = 0x A-0x B — O A-0x B, which vanishes
identically for a homogeneous background.

The resolution of this paradox is relatively easy. In calculating 4 for a specific g, one is
essentially considering a conditional average. A selected q appears to the drift waves as a long-
wavelength, inhomogeneous modulation. That modulation can be taken as the inhomogeneous
background on top of which a wave-kinetic formalism can be built. This idea can be systematized
by using the functional apparatus introduced by MSR, as demonstrated by Krommes and Kim.

Since the wave-kinetic formalism is being used in an unfamiliar context, one must rethink all of
its assumptions very carefully. In particular, it is not immediately clear what “action” density
should be evolved by the wave kinetic equation. In traditional wave theory, the appropriate
action is (electrostatically) J = (0D/0)(E?/8n) (2 being the mode frequency). However, this
is built from properties of the linear waves. It is unclear why linear wave physics should have
anything directly to do with the calculation of 731, which follows from properties of the nonlinear
interaction, and indeed it is inappropriate to use J. Instead, one must use an invariant of the
drift-wave—zonal-flow interaction.

For generalized Hasegawa—Mima dynamics, the relevant invariant was first found by
Smolyakov and Diamond [91], who essentially studied the inhomogeneous interaction entirely
in k space. However, we know from the work of McDonald and Kaufman on the systematic
analysis of weakly inhomogeneous systems with the aid of the Weyl calculus (for a review,
see Ref. 7) that it is better to work in a mixed a-space—k-space representation. That naturally
introduces Poisson brackets, the properties and interpretation of which are well known. Actually,
the lowest-order version of such a calculation for weakly inhomogeneous statistical dynamics
was first performed by Carnevale and Martin [68], although Krommes and Kim identified a
fundamental conceptual mistake in that work. In any event, when all of the various approaches
are brought into agreement, the Smolyakov—Diamond invariant is recovered. For the generalized
Hasegawa—Mima equation, that is

1
szk:/\/k, Nk:§(1+k2)2|9‘7k|2- (73)
It is important that this differs from the energy

&= %;a + k) ol (74)



At this point, Krommes and Kim proceeded to discuss the derivation of 731 from a wave-
kinetic equation that evolved Nj. However, the fundamental significance of AN} remained
unclear. Therefore, let me take a historical detour and jump ahead a few years. In the course
of my work with Kolesnikov on the ITG problem, we were led to consider the generalization
of the wave-kinetic approach to situations involving several coupled fields and possibly multiple
nonlinear invariants. Those are complicated enough that it is essential to work with the most
concise and systematic methodology available. Morrison’s Hamiltonian formalism for nonlinear
PDEs [92] is ideal for this purpose. For specific kinds of nonlinearity, happily including E X B
advection, it allows one to derive the nonlinear portion of the PDE (or system of PDEs) from
a particular Poisson bracket of the field with a Hamiltonian functional H. Now although H is
conserved when all nonlinear interactions are considered, it is not conserved for a subclass of
fluctuations such as short-scale drift waves because energy can be transferred to other modes.
However, in a bracket formalism it is known that additional Casimir invariants can be conserved
for an arbitrary Hamiltonian due to particular properties of the Poisson bracket. Using a
covariant bracket formalism combined with multiple-scale analysis, Krommes and Kolesnikov
[90] were able to show that for E X B advection a particular Casimir is conserved even under
the interaction between short-wavelength drift waves and long-wavelength convectives cells. For
the generalized Hasegawa—Mima equation, the Smolyakov—Diamond invariant is recovered. For
some more general systems of PDEs, multiple Casimirs may exist.

Multiple-scale analysis leads to a wave-kinetic description of the DW—-CC interaction. In the
face of multiple Casimirs, that formalism is interesting and nontrivial [90], but it is sufficient
here to merely consider the case of a single invariant N (discussed at length in Ref. 69). Then
the appropriate wave kinetic equation is

8T-/i7k - {ﬁkvﬁk} = 07 (75)

where the Poisson bracket is defined by Eq. (48) and ﬁk is an appropriate nonlinear advection
frequency of the short scales by the long scales (it is not the linear mode frequency of a short-
scale drift wave). A tilde emphasizes that the quantity is random (due to the stochastic nature
of the zonal flows). For the generalized Hasegawa—Mima equation, one has ﬁk =k- ‘N/q.

When Eq. (75) is summed over k and integrated over X, the Poisson bracket vanishes,
confirming that AV is truly invariant under the interaction between the long and the short scales.
Energy &, however, is not invariant, since it is a different wave-number weighting of (5¢?2); than
is AV, 1 and the Poisson bracket involves derivatives with respect to k. One finds

O = {Q, Ex} + 27;(:)5%7 (76)

where, if /\7}; = Ck,gk,

~1) . 1.5
i = 5 {0 e} (77)

It is important to realize that this first-order growth rate is not the desired long-wavelength

growth rate in the statistical spectral balance equation; note that 7,&1), being linearly proportional

to the long-wavelength amplitude (buried in fNZk), vanishes when averaged over an ensemble
of convective cells whereas the spectral balance equation holds after all averaging has been
performed. To obtain ’ygl, one must proceed to second order. It is unnecessary to repeat the
remainder of the calculation (which uses the wave kinetic equation a second time) here since
the details have been described in a number of places [8, 69, 93]. (Ref. 8, in particular, makes a
strong attempt to be introductory and pedagogical.) But the flavor of the calculation is clear,
and one can now appreciate that systematic multiple-scale analysis and wave-kinetic formalism
can be usefully applied not just to linear problems, but to nonlinear ones as well.



4. Current challenges in statistical turbulence theory:

Intermittency and coherent structures

The well-established two-point moment closures do a reasonable job of describing both
fluctuations in the energy-containing part of the wave-number spectrum and the associated
turbulent transport.?? However, they can fail badly at describing higher-order moments
[100, 101]. In this section, I introduce some of the recent issues concerning highly non-Gaussian
statistics. Few, if any, questions will be resolved here; this is a fertile area for future research.

4.1. Higher-order statistics

PDFs can (usually) be described by their infinity of moments [102] or, better, cumulants [21].

A Gaussian PDF P(x) is described by just two cumulants: the mean T = (x), and the variance

o? = (53/:2}. Basic measures of non-Gaussianity include the skewness S and kurtosis K (or the

flatness factor F')30:
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K is defined such that it vanishes for Gaussian statistics.

Kurtosis is a measure of the importance of large events. A PDF with large kurtosis frequently
has an exponential or stretched exponential tail, i.e., more slowly decaying than a Gaussian. For
example, the pure exponential PDF

1 /

P(z) = 5 e 7/° (79)
has K = 3. Realizations sampled from such PDFs display occasional and intermittent large
spikes.

That kurtosis and intermittency are linked follows from a simple example given by Frisch
[103, Chap. 8]. Consider a time series Z(t) constructed by turning on a random signal x(t) only
a fraction A of the time. The kurtosis of 7 is

L =3 = AT (2" /(%)) - 3, (80)

which approaches infinity as A — 0. [For a Gaussian signal, the formula reduces to 3(1 — X)/\.]

One cannot construct PDFs by specifying S, K, and other cumulants arbitrarily. Cumulants
must satisfy an infinity of realizability constraints, which stem from the positive-semidefiniteness
of a valid PDF. The simplest one is (§z2) > 0; another is

K>8%-2. (81)

This constraint will be important in the next section.

Various recent plasma experiments clearly display intermittent statistics. Time series taken
from probes inserted in the edges of various tokamaks are routinely intermittent. Visual evidence
can be found from gas-puff-imaging (GPI) data [104], which shows the intermittent formation
of density blobs that are occasionally ejected into the scrape-off layer (SOL) and may propagate
outward to the wall. A snapshot is shown in Fig. 6. Although a good deal of understanding of the

2% The justification for this assertion is the extensive work done in the 1990’s by Bowman [94-96] and Hu [97-99]
on realizable Markovian statistical closures. That work included successful comparisons between the predictions
of statistical closure theory and direct numerical simulations.

3071t is unfortunate that the names of the kurtosis and flatness have not been entirely standardized in the literature.
My definition of F' (I follow Frisch [103, p. 41]) is often confusingly called the kurtosis, and my definition of K is
sometimes called the “excess kurtosis.”
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Fig. 6. (Color online.) Fluctuations in the edge of NSTX show the intermittent formation of “blobs.” From
http://www.pppl.gov/~szweben/NSTX04.

propagation of a single blob has been developed,3' blob generation is much more complicated
because blobs arise intermittently from a sea of turbulence. Research on blob generation is
ongoing [106]; it requires a comprehension of many facets of plasma dynamics as well as statistical
turbulence theory.

4.2. Physical relationships between kurtosis and skewness
A more basic physics experiment may shed light on intermittency in plasmas. In the machine
TORPEX (http://crppwww.epfl.ch/torpex/), skewness and kurtosis have been measured
at many places in the machine in a large ensemble of shots [107]. The data shows the clear
relationship

K =aS? +b, (82)

with @ ~ 1.5 and b ~ —0.22. These values are consistent with the realizability constraint (81).
However, no physics basis for this relationship was offered by the original investigators.
Strikingly, essentially the same relationship, with the same value of a, is evinced by a global
database of fluctuations in sea-surface temperature, as shown by Sura and Sardeshmukh (SS)
[108]. Furthermore, those investigators advanced an analytical calculation, based on a nonlinear
Langevin equation, that predicted the values a ~ % and b ~ 0. This is clearly suggestive.
The essence of the SS model is the inclusion of a white-noise multiplicative nonlinearity in

the evolution equation for the fluctuations:

O0T + -+ + o f(H)6T = f(t), (83)

31 The basic physics of blob propagation in a torus is E X B motion due to internal polarization arising from
magnetic drifts [105].



where f is Gaussian white noise and o measures the strength of the nonlinearity. Given such
a stochastic differential equation [109] (to be analyzed in the Stratonovich interpretation), a
Fokker—Planck equation can be deduced. The structure of that equation is simple enough that a
closed hierarchy of analytical relations can be obtained for the moments through a given order.
Eliminating the variance in the equations for K and S gives rise to the relation (82).

The validity of the model even for its intended target of sea-surface temperature fluctuations
may be questionable; however, its prediction of a = % is obviously a nontrivial success. It is
reasonable, therefore, to inquire whether a similar approach may be fruitful for the application
to TORPEX. Such a calculation was first outlined in Ref. 110, and some details have been

published [111]. Here I shall just mention a few of the salient issues.

4.2.1. Multiplicative white noise and Markovian Langevin equations. The most important step
in the modeling is the representation of all nonlinear effects by the product f &7, where f is
the external noise that models the excitation of the turbulence (in lieu of a term involving
the linear growth rate). Assuming that f is white ensures a Markovian (time-local) description.
Similar descriptions are well known in statistical closure theory in the form of realizable Langevin
representations for closures such as the EDQNM. In those theories, the effects of the original
quadratic nonlinearity are represented by a coherent nonlinear damping n™éy and an internal
incoherent drive f™ oc @(t), where w is Gaussian white noise. However, that w is specifically not

the same as an external stirring force f, so one must dig deeper to understand the connection,
if any, to the SS model. The remainder of the discussion becomes too technical for inclusion
here; I refer the interested reader to Ref. 111.

4.2.2. The role of linear waves. The SS model applies to a single real scalar field. In confined
plasmas, however, linear waves are ubiquitous. Even a simple drift mode, linearly described by
Orp+iQe = 0, must be represented by a 2D system of first-order ODEs that couple the real and
imaginary parts of the complex wave amplitude. Not only does this increase the complexity of
the analysis, the presence of a real frequency has consequences for the ultimate statistics of the
associated nonlinear equation. If one follows the spirit of the SS model, it can be shown that
although the basic scaling K = aS? + b still holds, one has, in particular, a = a(f2). For the
derivation of that relation for a simple model, see Refs. 110 and 111.

4.8. What can one learn from single-point statistics?

The simplest model that includes the effects of wave propagation predicts that the variation
of a with € is bounded and modest; the principal effect of nonzero €2 is to reduce S and K.
That may account for some of the variability in the data. Presumably shots with large values of
skewness are highly nonlinear and relatively insensitive to a linear wave frequency; such shots
should tend to track the a = % curve, as indeed they appear to.

Ultimately, what does one learn from single-point statistics? At present, the answer is unclear.
The level of the current modeling, which is not derived from realistic PDEs for the plasma
physics, is too crude to enable one to deduce fine points of the underlying dynamics, no matter
how suggestive is the {2 = 0 prediction a = % It remains possible that a more refined theory of
the PDF for density fluctuations obeying specific nonlinear PDEs can be developed. The gold
standard here is the mapping closure technique due to Chen et al. [50]. Unfortunately, that
theory is very difficult (see additional discussion and references in Ref. 28), particularly when
applied to coupled PDEs that contain linear waves. Extensive further development is required.

In addition to the theoretical complexity of systematic PDF theories, it must be stressed
that knowledge of the single-point PDF of a fundamental scalar field such as temperature is
not sufficient for predictions of transport coefficients, which require cross correlations. Those



are easily available from moment closures, which however have a great deal of difficulty in
describing intermittency. It may be that entirely new tools are required in order to make
progress. Certainly numerical investigations will continue to play an increasingly important role
in explorations of complicated nonlinear statistical dynamics, but additional analytical methods
would be welcome as well. As younger generations develop those, they could do no better than
to look for background and motivation to the elegant tools, and the physical insights behind
them, to which the present Symposium pays tribute.

5. Summary and discussion

In the previous sections, I have tried to provide a snapshot of some of the interesting issues in
modern plasma turbulence theory, emphasizing connections to, or generalizations of, some of
the tools that were either developed by Prof. Kaufman and/or his students and colleagues or, in
my opinion, would appeal to their instincts for systematology and elegance. Although turbulent
plasmas in the laboratory are incredibly complex, the nonlinear equations that describe them
are overly rich with dynamical possibilities, and many questions remain unanswered, it does
appear that a predictive superstructure is beginning to appear.

The short title of this article is “Tools for fusion-related microturbulence.” Although I
mentioned several fusion-related applications (toroidal plasma equilibria in stochastic magnetic
fields, and the Dimits shift), fusion-specific details have been discussed here only minimally. How
then can the title be justified, especially when calculations aimed specifically at practical fusion
phenomena such as the Dimits shift can be done only for extremely idealized models? My answer
is that the more complicated the practical details, the more the field benefits from pedagogical
exemplars in the sense of Kuhn [29]. (For a short discussion of Kuhn’s paradigm concept, see
Ref. 112.) Hopefully the methods and models discussed above will help the reader structure his
or her understanding of the basic logical threads underlying the behavior of turbulent plasma
confinement devices and will point the way to future analytic calculations that are yet more
concise and elegant.

In Regis’s book Who Got Einstein’s Office? [113], he comments on the vision of Abraham
Flexner, the self-styled educator and author of the influential 1910 Flexner Report on the state
of American medical education: “[Flexner] dreamt of a hybrid university—or an institute. .. —in
which faculty members and students went into virgin territories together, not as equals, perhaps,
but at least as partners.” Of course, the physical realization of that dream is Princeton’s
Institute for Advanced Study. But the description of Flexner’s ideal interaction between faculty
members and students strikes me as perfectly applicable to the intellectual environment that
Allan Kaufman fostered at Berkeley. He and his students, post-docs, and visitors together
tackled many difficult and subtle problems in theoretical physics, distilling new and elegant
principles and perspectives that have created recognizable order from the chaos of myriad
physical effects and made it so much easier for the newcomer to comprehend the basic structure
of plasma dynamics. I feel privileged to have had even a brief taste of plasma-physics research
a la Kaufman. That Allan’s influence has not faded is evidenced by the fact that in organizing
my thoughts for this Symposium I was led to new results on renormalized ponderomotive force,
30 years after the original version of the K—y theorem was published. I suggest that an aspiring
theorist could do no better than to study the body of Allan’s work; it will inspire one and lead
to the truth.

Finally, I would like to note the influence that my early Berkeley experiences had on my own
teaching philosophy. I never sat in Allan’s classroom, for which I am very sorry. However, his
approach to physics is very compatible with my own inclination, which is to seek out overarching
principles that speak to the fundamental unity of the myriad of nonlinear phenomena. One must
certainly teach specific known facts, but only by embedding those into a more general logical
framework can one progress to generalizations and new discoveries. In my own teaching, I try to



emphasize that framework, including insights that stem from, or were motivated by, discoveries
made by Allan and his collaborators. I am sure that I do it much less well than Allan, but T am
very grateful indeed for his inspiration. I am deeply honored to have been able to participate in
Plasma Theory, Wave Kinetics, and Nonlinear Dynamics: KaufmanFest 2007.
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