Simulation of radiolysis in the near field of a nuclear repository and the spectrophotometric investigation of the formation of radiolysis by-products by applying high energy beam-like experiments

PDF Version Also Available for Download.

Description

In the event of inundation of a nuclear waste repository located in a geological salt formation, chloride brines in contact with nuclear waste will be exposed to different kind of radiation depending on waste-form conditions. Ionizing radiations, however, have the ability to significantly affect the groundwater chemistry of the brines through the formation of free radicals, ionic- and molecular species; among them the typical byproducts of a-radiolysis: hypochlorite (OC1-) and hypochlorous acid (HOCl). In the absence of effects which arc supposed to dominate the redox conditions in the repository (corrosion of metals, microbial activity) the presence of OC1- is known ... continued below

Physical Description

9 p.

Creation Information

Hartmann, T. (Thomas); Paviet-Hartmann, P. (Patricia); Wetteland, C. J. (Christopher, J.); Lu, N. (Ningping); Ware, S. D. (Stuart D.) & Sage, S. (Sondra) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the event of inundation of a nuclear waste repository located in a geological salt formation, chloride brines in contact with nuclear waste will be exposed to different kind of radiation depending on waste-form conditions. Ionizing radiations, however, have the ability to significantly affect the groundwater chemistry of the brines through the formation of free radicals, ionic- and molecular species; among them the typical byproducts of a-radiolysis: hypochlorite (OC1-) and hypochlorous acid (HOCl). In the absence of effects which arc supposed to dominate the redox conditions in the repository (corrosion of metals, microbial activity) the presence of OC1- is known to increase the redox potential of the brines and further to influence the stability of actinide waste-forms by accelerating their dissolution arid - most importantly - to oxidize actinides to their higlier oxidation states, whicli are gcncrally the most soluble ones. We are presenting a new approach to determine the radiation-induced formation rates of hypochlorite and hypochlorous acid as a first step to assess long-term steady-state repository conditions. To ovt:rcome the serious constraints of conventional radiocheinical work with GBq activity levels, we are simulating a-irradiation of chloride brines by the adaptation of ion-beam-line experiments. Therefore, we irradiate liquid chloride brine targets with 5 MeV protons, and 5 MeV helium ions. The irradiation-induced formation rates of OCX- and HOC1 were determined by UV-Vis spectrophotometry. To give an example, the measured G values for the HOCl formation in 3.7 M MgC12.6H20, pW 4.42, irradiated by 5 MeV protons was determined to be 0.0374 {+-} 0.0022, and 0.0536 {+-} 49 by irradiating with 5 MeV helium. The distinguished ltnowledge about the radiation-induced production of oxo-chloride species is the first step towards the assumption of their steady-state concentrations in the irradiation field of the repository.

Physical Description

9 p.

Source

  • Submitted to: MRS 2002 Conference, December 2-6, 2002, Boston, MA

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6481
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976387
  • Archival Resource Key: ark:/67531/metadc931086

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 4:49 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hartmann, T. (Thomas); Paviet-Hartmann, P. (Patricia); Wetteland, C. J. (Christopher, J.); Lu, N. (Ningping); Ware, S. D. (Stuart D.) & Sage, S. (Sondra). Simulation of radiolysis in the near field of a nuclear repository and the spectrophotometric investigation of the formation of radiolysis by-products by applying high energy beam-like experiments, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc931086/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.