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Electrokinetic tr"t1'~n{',rt In microchannels 

Abstract: We present a numerical framework to model the electrokinetic transport in 

microchannels with random roughness. The three-dimensional microstructure of the rough 

channel is generated by a random generation-growth method with three statistical parameters to 

control the number density, the total volume fraction and anisotropy characteristics of roughness 

elements. The governing equations for the electrokinetic transport are solved by a high

efficiency lattice Poisson-Boltzmann method in complex geometries. The effects from the 

geometric characteristics of roughness on the electrokinetic transport in microchannels are 

therefore modeled and analyzed. For a given total roughness volume fraction, a higher number 

density leads to a lower fluctuation due to the random factors. The electroosmotic permeability 

increases with the roughness number density nearly at a logarithmic law for a given volume 

fraction of roughness, but decreases with the volume fraction of roughness for a given roughness 

number density. When both the volume fraction and the number density of roughness are given, 

the electroosmotic permeability is enhanced by increases of the characteristic length along the 

external electric field direction or decreases of the length of the direction of across the channel. 

For a given microstructure of rough microchannel, the electroosmotic permeability decreases 

with the Debye length. Compared with the corresponding flows in a smooth channel, the rough 

surface may enhance the electrokinetic transport when the Debye length is smaller than the 

roughness characteristic height under the assumption of constant zeta potential for all surfaces. 

The present results may improve the understanding of the electrokinetic transport characteristics 

in microchannels. 

Keywords: electrokinetic transport; rough channel; lattice Boltzmann method; random roughness 



I. Introduction 

When the length scale is down to micro- and nanometers, the interfacial phenomena become 

more and more importantl.2. The electrokinetic transport, as a classical interfacial phenomenon 

discovered more than 200 years ago, now plays a fundamental role for a better understanding of 

liquid flow mechanism through microchannels3
, and hence for optimal design and operation of 

8Microsystems, such as Lab-on-a-chip devices4
. 5 and micro fuel cells6

- • At the same time, 

electrokinetic flow has become one of the most important non-mechanical actuating techniques 

12 15in microfluidics, used for pumping9
- , mixing l3

- and separating16 etc., due to its excellent 

scalability, low dispersion and easy of contro14
, 10, 13, 17. Therefore, analysis and modeling of 

electrokinetic transport in microchannels have recently received a great amount ofattention I8
-
25

• 

Almost all surfaces have certain degree of roughness either incurred during fabrication process 

or due to the adsorption/adhesion of other species such as macromolecules. Although it is well 

known that the electrokinetic flow is sensitive to the surface properties26
, little attention has been 

paid to the effects of surface roughness on electrokinetic transport due to its complexity, 

especially for random roughness in microchannels27
• 

Dukhin and De~jaguin 28 may be the first ones who performed systematic theoretical studies on 

roughness effects on electrokinetic flows. They introduced two critical length scales to 

characterize the problem: the Debye length which is defined as the thickness of the electrical 

double layer, and the charactertistic length of surface roughness. For thin double layer cases 

where the Debye length is much smaller than the surface roughness height, the electroosmotic 

flow near the concave-convex portion of the rough surface is essentially the same as that near a 

smooth surface, and the Smoluchowski equation is therefore valid. The electroosmotic flow in a 

rough channel can thus be predicted by the standard linear models. When the Debye length is 
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comparable to the roughness height, the linearized models fail to describe the electrokinetic 

transport any more. Especially when the Debye length is much larger than the roughness size, the 

effective charge density on the rough surfaces is higher than the corresponding smooth surfaces 

due to the increased area by the roughness26 
• 

Thanks to the rapid development of computer and computational techniques, a few numerical 

approaches have been applied to model and predict the electrokinetic transport in rough 

microchannels. Hu et aL 29-31 studied the electroosmotic flow in microchannels with three

dimensional rectangular roughness elements using a finite-volume-based numerical model within 

a thin Debye length limit. Finite element method and analysis have been employed as well to 

investigate the electroosmotic flow in microchannels with two-dimensional sinusoidal roughness 

32" 33. Recently, a lattice Poisson-Boltzmann method (LPBM) has been proposed to use as an 

efficient solver for the strongly nonlinear governing equations for electrokinetic flows in 

microchannels 24 and the two-dimensional rectangular roughness and cavitation effects have 

been investigated 34. Up to now the electrokinetic flows in microchannels with random roughness 

have never been studied to the best knowledge of the authors. 

There are two challenges to model the electrokinetic flows in microchannels with random 

roughness. The first one is how to describe the complex geometries of random roughness in 

microchannels. In most cases the roughness in a real microchannel caused by manufacture or 

macromolecules adsorption is out of control, which means that the roughness geometry features, 

such as position, shape and size, are irregular and random. Since the electrokinetic flows are 

sensitive to surface characteristics, any imitation with regular geometry for roughness may lead 

to inaccurate predictions and analysis to a real system. However there is no effective way in the 

existing literature for digitalizing the complex geometries of random roughness in microchannels 

4 
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yet. Secondly, solving the governing equations efficiently for electrokinetic flow in complex 

geometries is still very challenging. The coupled electrostatic, hydrodynamic and mass transport 

problem subject to complex geometrical boundary conditions represented by the solid-liquid 

interface in randomly rough channels requires huge or even unacceptable computational 

resources for the traditional partial differential equation (POE) solvers, such as the finite 

difference method (FOM) and the finite element method (FEM). The difficulty mainly comes 

from two aspects: the strong nonlinearity of governing equations and the irregularity of random 

structures. The former may cause the classical POE solvers unstable or even disconvergent, 

while the latter will lead to a requirement for extreme grid refinements in the computational 

domain especially near the roughness. This computational difficulty in traditional POE solvers 

thus limited modeling and analysis of electrokinetic flow to very simple geometries. 

Facing these challenges, we are aiming to (l) build up a numerical framework for modeling 

electrokinetic transport in microchannels with random roughness; (2) analyze the effects of 

roughness geometry on the electrodynamic and hydrodynamic transport in microchannels. The 

results will be compared with the existing theoretical analysis and numerical data. 

II. Mathematical models 

Consider an N -component Newtonian electrolyte flowing with a velocity u(r,t) in 

microchannels with no polarization or chemical reactions. Let 'P(r,t) be the electric potential 

prevailing within the solution where r is the position vector; the flux J{ of each ith ion species, 

composing the solute, is given by the following constitutive equation 26,35: 

ez Dn
-DVn - I VIif+nu (I)I I 

I I kT ~' I' 
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Electrokinetic microchannels 

where nj is the number density of the i th ion species, z, the i th ion algebraic valence, and e 

the absolute charge of electron, Di the ion's diffusivity, k the Boltzmann constant and T the 

absolute temperature. The ionic flux J, and the concentration ni obey the equation 

(2) 


For an incompressible laminar electroosmotic flow, the movement of fluid is governed by the 

continuity and momentum equations: 

V-u 0, (3) 

au 2
P- + pu -Vu = j.N u + F , (4)at 

where P is the fluid density, and Ji the dynamic fluid viscosity. F can be any kind of body 

force but here we only consider the driving force from the electric field. In general, the electric 

force in electrokinetic fluids may include the Lorentz force associated with external applied 

electric field, the force caused by the electromagnetic susceptibility, and the intermolecular 

electric attraction 24. In the present contribution, we are considering vey slow quasi-steady-state

electrokinetic flow in microchannels so that the other forces except the static electric force are 

negligible. Therefore the driving force is simplified as: 

(5) 


where Pc is the net charge density and E is the electric field strength. The net charge density Pe 

can be expressed as 

(6) 


The electric potential distribution is governed by the Poisson equation 
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(7) 

where &r is the dimensionless fluid dielectric constant and &0 the permittivity of a vacuum. 

Equations (2)-(7) are the governing equations for electroosmosis in microchannels and can be 

solved subject to the following boundary conditions on the liquid-solid interface n 

(8) 

Un = 0, (9) 

(10) 

where v is the outer normal to n, and C;; the zeta potential. 

When the ionic convection is negligible and the electric potential field is continuously 

derivable, Eq.(2) has a simple steady solution for dilute electrolyte solutions that the ionic 

concentration n, falls into the Boltzmann distribution: 

( e7 )n expI --=.!...I/F (11 ) 
1,00 \ kT't' , 

where nl,oo is the bulk ionic number density. Substituting Eq.( 11) into Eq.(7) yields the famous 

nonlinear Poisson-Boltzmann equation for electrokinetic flows 36: 

1 ", ez n exp(- ez, III). ( 12) 
&r&O L;- I kT't'1,00 

The present contribution solves the governing equations (3-6,11,12) subject to the boundary 

conditions Eqs. (8-10) by the numerical methods as described in the next section. 

III. Numerical methods 

This section describes the numerical methods used to simulate electrokinetic flows in 

microchannels with random roughness, including a reproduction algorithm for three-dimensional 

7 
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random roughness microstructures and a meso scopic POE solver for the multi-physical transport 

equations, the lattice Poisson-Boltzmann method. 

3.1 Generation ofRandom Roughness 

Although the microstructure details of each roughness element, such as shape, size and 

connections, are quite random in a real microchannel, people can still measure and summarize 

essential statistical information of morphology and then generate an equivalent structure in 

computer. The macroscopic statistical information of random roughness may include: roughness 

position distribution, roughness element shape and average size, volume fraction of roughness, 

anisotropy degree of roughness element, and so on. The reproduced roughness microstructure 

may not have to be exactly the same as the real one in every detail, but may involve most of the 

same macroscopic structure characteristics in statistics. 

A. Description of algorithm 

No references have been found to reproduce the random roughness in microchannels yet. 

Herein inspired by a random generation-growth method for constructing of random 

microstructures of porous media 37. 38, we adapt it to reproduce microstructures of random 

roughness on upper and lower smooth walls in a three-dimensional microchannel. The process of 

the generation-growth model for random roughness microstructures is described as below: 

i) Randomly locate seeds of roughness elements on the upper and lower wall surfaces based on 

a roughness distribution probability, s", whose value is no greater than the volume fraction of 

roughness. Each cell of both walls is assigned a random number by a uniform distribution 

function within (0, 1). The cell whose random number is no greater than s" will be chosen as a 

roughness element seed; 
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ii) Grow every cell of the existing roughness elements to its neighboring cells to its six 

directions based on the given directional growth probability, D , where j represents the 
J 

direction. Again for each neighboring cell , new random numbers will be assigned and those cells 

whose random number is no greater than D , will become part of roughness;
J 

. iii) Repeat the growing process of (ii) until the volume fraction of the total roughness elements 

reaches the given value ~I . 

Thus the generated microstructure is controlled by the three statistical parameters, Sf' D . and v . 
( J R 

B. Discussion on parameters 

The roughness distribution probability, s,,' which is defined as the probability of a cell/grid on 

the walls to become a seed of roughness, is strongly related to the number density of roughness 

elements. For a given roughness volume fraction, the number density of roughness elements nil 

and the average volume of each roughness element Vr _e are related to s" as: 

- N jAnR - lrall · sd lrall' (l3a) 

(13b) 

where N woll and Awoll denote the total cell number and area of each wall, respectively. 

The value of s" also controls the degree of structure details for a given volume fraction of 

roughness and grid systems. A smaller s" leads to a finer description of the microstructures, 

including shape and connections of the roughness elements. 

9 
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Fig. I Six growth directions of each cell in three-dimensional cubic grid systems 

The directional growth probability D ' which is defined as the probability of a cell 
J 

neighboring in the j -th direction to become a part of roughness elements, controls the degree of 

anisotropy. Different from those for porous media, there are only six growth directions for 

roughness elements, as shown in Fig. I, because the roughness can not own independent cells. 

We can obtain an "isotropic" structure of roughness elements by assign each directional growth 

probability to the same value. The so-called isotropic structure for a single roughness is a half-

spherical structure in statistics. We can vary the anisotropy of roughness structures by changing 

the relative value, or the ratio in other words, but not the absolute value of the directional growth 

probabilities. Half-elliptical structures will be generated if the ratio Dr : D, : D=does not equal to 

unit, and the averaged radius ratio is proportional to the square root of the growth probability 

ratio: If oc fj)., "V, 
C. Examples 

To indicate the roughness shape changing with the directional growth probability, we first 

generate one single roughness element in the channel by putting only one seed on the middle of 

the lower wall. Fig. 2 shows three cross section profiles of 3D roughness geometry at the y
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directional middle section (y=30) on a 3D grid system of 60x60x60. The stochastic 

characteristics of structures are depicted quite realistically in the figures. The blue parts represent 

the solid roughness and the red the channel. Fig. 2(a) shows a half-sphere-like structure since the 

growth probabilities in all directions are equal. The structure is therefore isotropic in statistics 

when standing on its seed position, which means the averaged radius length for each direction is 

the same. Anisotropic structures are demonstrated in Fig. 2(b) and (c) by change the growth 

probability ratios. Half-ellipse-like structures are generated. When the z-directional growth 

probability is four times of the other two ones, the z-directional radius is approximately two 

times of those in the other directions, as shown in Fig. 2(b). The z-directional radius is 

statistically half of those in x- and y-directions if its growth probability is a quarter of the other 

ones (see Fig. 2(c)). These results validate that the characteristic length in each direction is 

proportional to the square root of its growth probability. 

(a) (b) (c) 

Fig. 2 Cross section profiles for isotropic or anisotropic structure of single-roughness element. 

(a) Dr : Dy : D = 1: I: I ; (b) Dr : Dy : D =1: I :4; (c) D, : Dy : D =4:4: I. The 3D grid system is 60x60x60 z z z 

and the cross section position is at the middle of y axis. The volume fraction of roughness 

v
R 
=0.05. 
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Fig. 3 shows effects from the roughness distribution probability and the roughness volume 

fraction on the geometries and connections in the rough microchannels. The roughness elements 

are supposed to be isotropic in statistics. The 60 x60x60 grid is used and the locations of the x-z 

cross section profiles are randomly chosen. Comparisons between Fig. 3(a) and (b) indicate that 

a larger roughness distribution probability leads to more roughness elements with a smaller 

averaged roughness element size for the same roughness volume fraction. A larger total 

roughness volume fraction results in larger roughness size and greater roughness connections by 

comparing Fig. 3(a) with (c). 

(a) (b) (c) 

Fig. 3 Profiles of x-z cross sections in microchannels with generated random roughness for 

different parameters: (a) s,=0.03 and v =0.06; (b) s , =O.OI and v =0.06; (c) s,=0.03 and v =0.1. , R , R c: R 

The 3D grid system is 60x60x60 and the position of x-z cross section is randomly chosen. 

3.2 Lattice Poisson-Boltzmann Method 

After the rough channel is generated, the set of coupled hydrodynamic and electrodynamic 

governing equations for the electrokinetic flows subject to the appropriate boundary conditions 

will be solved by the LPBM which combines an electric potential evolution on discrete lattices to 

solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method 

12 
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on a same set of discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann 

method) 24. The equations are only solved in liquid phase and the solid phase is silent and 

charged homogeneously on the surfaces. 

A. Evolution equations 

Unlike conventional computational methods based on macroscopic continuum equations, the 

lattice Boltzmann method employs the mesoscopic Boltzmann equation to determine 

macroscopic transport dynamics, and solves the governing equations by tracking distribution 

functions of particle packets on lattices39
• For laminar flows driven by an external force, the 

Boltzmann-BGK equation with an external force term, F, is 

Df 
(14)I5i==8J +(~·V)f 

where f == f(x,~,t) is the single particle distribution function in the phase space (x,~), ~ the 

microscopic velocity, Tv the relaxation time, rtf the Maxwell-Boltzmann equilibrium 

distribution and F the external force term 

F = 3G· - u) r", (15) 

where G is the external force per unit mass 40 and c the lattice speed for mass transfer defined 

as oj0/ with 0, representing the lattice constant (grid size) and 0/ the time step. 

Thus the discrete density evolution equation is 

(16) 

where e denote the discrete velocities, Tv the dimensionless relaxation time, and f;" thea 

density equilibrium distribution. For a three-dimensional fifteen-speed (D3Q 15) system shown in 

Fig. 4, 

13 



microchannelsElectrokinetic tr"YI£"I",rt 

(0,0,0) a=O 

(±1,0, O)c,(O, ± 1, O)c, (0, O,±I)c a =1to 6 , (17) 

(±1, ±1)c a =7 to 14 

the dimensionless relaxation time which is a function of the fluid viscosity, 

3v 
r., =-+0.5, (18)

oc x 

with v representing the kinetic viscosity, and 

(19) 


with 

2/9 a=O 

OJa = 119 a =1to 6 (20) 
{

1172 a 7 to 14 

~__________________~11 

14 

9 1L__________________..6 

Fig. 4 The lattice direction system (a) for D3Q 15 model 

The external force in the discrete evolution equation is 

(22) 
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The macroscopic density and velocity can be calculated using 

(23) 

a 

a 

(24) 


To solve the Poisson equation with strong nonlinearity, Eq. (12), we employ here another 

evolution method on the same grid system, the lattice Poisson method (LPM) 24,41, by tracking 

the electric potentia) distribution transporting on the discrete lattices. First we extend Eq. (12) 

into a time-dependent form 

(25) 


with grhs = -I-I z,en;,c/) exp[- kz,e· Iff] representing the opposite of the right hand side (RHS) of 
a:o i h T 

the original Eq. (12), and then we adopt the following discrete evolution equation for the electric 

. I d' 'b' 74 41potentia Istn utlOn - , 

g" (r + /).r,t + ~'i) - ga (r,t) = __I [ga (r,t) - g~q (r,t)] +(1- 0.5 )o"g{Oagrhs , (26) 
rv; rg 

where the equilibrium distribution of the electric potential evolution variable g is 

a=O 

a I to 6 (27) 

a=7tol4 

The time step for the electric potential evolution is 

~,,= (28) 
.~ C 

g 

where c g IS the lattice speed for the electric potential propagation 41 The dimensionless 

relaxation time is 

15 
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(29) 


It has been proved that c!' can be any positive number only ensuring the value of Til: within 0.5 

and 2 41,42. After evolving on the discrete lattices, the macroscopic electric potential can be 

calculated using 

a 

(30) 


Such an evolution equation for electric potential distribution is valid for both steady flows and 

unsteady flows at very low velocities because the electromagnetic susceptibility effect is ignored 

in the present form. Although the lattice evolution method for nonlinear Poisson equation is not 

as efficient as the multi-grid solutions for simple geometries due to its long wavelength limit, it 

is more suitable for parallel computing and for geometrical complexity 43,44. 

B. Boundary condition treatments 

The boundary condition implements are critical to the accuracy of the numerical simulations. 

The hydrodynamic boundary conditions for the lattice Boltzmann method have been studied 

48extensivel/5
- • The conventional bounce-back rule is the most commonly used method to treat 

the velocity boundary condition at the solid-fluid interface due to its easy implement, where 

momentum from an incoming fluid particle is bounced back in the opposite direction as it hits 

the wa1l39 
. However the conventional bounce-back rule has two main disadvantages. First, it 

requires the dimensionless relaxation time strictly within the range of (0.5, 2), otherwise the 

prediction will deviate from the correct result 45. Second, the non-slip boundary implemented by 

the conventional bounce-back rule is not located on the boundary nodes exactly, which will lead 

to inconsistencies when coupling with other PDE solvers on a same grid set 48. To overcome the 

inconsistencies between the LBM and other PDE solvers on a same grid set, one can replace the 

16 
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bounce-back rule with another "non-slip" boundary treatment proposed by Inamuro et al. 46, with 

the cost of loss of easy implement for complicated geometries. An alternative solution is to 

modify the boundary condition treatments of the PDE solver for the electric potential distribution 

to be consistent with the LBM bounded by the bounce-back rule. 

In this contribution, the bounce-back rule for nonequilibrium distribution proposed by Zou and 

He47 is introduced and extended to both hydrodynamic and electrodynamic boundary implements 

to deal with the complex geometries of random roughness. 

At the boundary the following hydrodynamic condition holds: 

f Heq 
jJ , (31 ) 

where the subscripts a and fJ represent the opposite directions. 

Analogously, the non-equilibrium "bounce-back" rule for the electric potential distribution at 

the wall surfaces is suggested as: 

(32) 


These boundary treatments are easy to implement for complicated geometries and have 

approximately second-order accuracy 47,48. 

IV. Results and discussion 

Fig. 5 shows a schematic illustration of three dimensional electrokinetic flows in charged 

rough microchannel. The roughness is randomly distributed on upper and lower walls, which is 

generated by the algorithm described in section 3.1. The cubic domain is periodic in both x and y 

directions. The solid surfaces are homogeneously charged with a zeta potential, :;; , and the 

electrolyte solution is driven flowing through the channel by an external electric field. E. 

17 
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H 

.' 

E-


Fig. 5 Schematic of electrokinetic flows in rough microchannel 

In the present simulations, the channel width Ii, which is defined as the distance between the 

two smooth base walls, is fixed at one micron. A 60x60x60 uniform grid is used. We change the 

values of generation parameters (s", D, and v;,) to vary the geometries of roughness. The bulk 

ionic concentration n", is 0.3x 10-5 M for most cases and may vary from 0.3 to 3.3x I 0-5 M when 

we need to change the Debye length. The other properties and parameters used in this work are: 

the fluid density p =999.9 kg/m3
, the dielectric constant ErEO =6.95x I 0- 10 e2/J m, the dynamic 

viscosity J1 =0.889 mPa s, the temperature T =273 K, the surface zeta potential -50 m V and the 

external electric field strength E I x 1 06 Vim. 

A. Roughness number density effect 

First we consider the effects from the roughness number density n" for a given total roughness 

volume fraction at v
R 

=0.05. Supposing the roughness elements are isotropic, we vary the 

roughness number density by changing the value of the roughness distribution probability s", 

and nil is then calculated through Eq.(I3a). 

18 
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Fig. 6 shows the electroosmotic permeability for three different roughness number density 

cases. The electroosmotic permeability, K e , for the incompressible fluid is defined as: 

(33) 


where U, is the velocity in x direction (same as the direction of E) and A the area of cross 

section. Since the generated microstructure of roughness is random, the calculated permeabilities 

are not exactly the same even though all the parameters are same, but fluctuate around the 

statistical average. Fig. 6 indicates that the fluctuation decreases as the roughness number density 

increases for a given total roughness volume fraction. For the current three cases with finite 

samples, the fluctuation is greater than 6% for nl/ =3.6/Ilm2 (sJ =0.00 I). around 3% for 

2.... IJ 

!!.' 2.3 
NE 

~ 2.2 0 0" 0 
~ ----".-----"----.(;>-----0-----------------0---------- 

:" 2.1 [-._.._._._~._ ---'il.-.-."'V---- _._._._._~ _____ .___ ._._.____._. 

2 """ 
1.9 

1.8 _1 1 ! ~ _ ~, i 

1 2 3 4 5 6 1 8 9 10 
Samptes# 

Fig. 6 Electroosmotic permeabilities for three roughness number densities. The symbols are the 

simulated results for different samples, and the lines represent the statistical average values for 

each case. The total volume fraction of roughness is 0.05. The bulk ionic concentration n", IS 

0.3x I 0-5 M. 
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Fig. 7 shows the calculated electroosmotic permeability when the roughness number densities 

vary from 3.6 to 1800 /J!m2. The permeability increases with the roughness number density. 

When a logarithmic scale is used for the x axis. the permeability appears to increase linearly. In 

other words, the permeability increases with the roughness number density nearly 

logarithmically. 

Fig. 7 Electroosmotic permeability versus the roughness number density. The total volume 

fraction of roughness is 0.05. The bulk ionic concentration noo is 0.3x 1 0.5 M. The symbols are 

the simulated results and the solid line is a linear fit. 

B. Roughness volume fraction effect 

For the given roughness number density (nR ) and anisotropy parameters, the roughness 

volume will directly influence the size of roughness elements and therefore the resistance of the 

channel flow. Fig. 8 shows the electrokinetic permeability when the roughness total volume 

fraction is changing from 0.01 to 0.09 for two given roughness number densities. There are 1 % 

fluctuation error bars for nil =360/J!m2 (Sd =0.1) and 3% fluctuations for nil =36/J!m2 (s" =0.01). 

For both cases, the permeability decreases with the roughness total volume fraction. The 
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permeability difference between the two roughness number densities Increases with the 

roughness volume fraction in the current volume fraction range (0.1-0.9). 

,l' 

1.8L.···········~0~.0=-=2---=-0.704;-----=Oc-':.0-=-6--0:-:.0=-=8---='0.1 

Fig. 8 Electroosmotic permeability in rough microchannels changing with the total roughness 

volume fraction. The squares are results for nR =360/Jlm2 (Sd =0.1) with 1 % fluctuation error bars 

and the circles are those for nR=36/Jlm2 (s,,=O.OI) with 3% fluctuation error bars. The bulk ionic 

concentration n is O.3x 10.5 M. 
'" 

C. Anisotropy effect 

The anisotropy of the roughness geometry can be controlled by the directional growth 

probabilities in our generation method. As we mentioned before. the ratio rather than the 

absolute values of D j plays the key role in influencing the anisotropy. The directional 

characteristic length ratio is proportional to the square root of the corresponding directional 

growth probability. In order to make the anisotropy effects easily understood, we keep the other 

two directional growth probabilities equal when changing the concerned one. For example, when 

we consider the y directional anisotropy effect, we keep D,: D, : D I: L~ : I and change the z 

21 
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value of L~. For such a case, the Ly will be the value of x axis for y directional characteristic 

length ratio in Fig. 9. 

Fig. 9 shows the electroosmotic permeabilities for different characteristic length ratios in three 

directions for given roughness number density and roughness volume fraction. First of all, the 

permeability varies with the directional anisotropy monotonically for all the three directions. The 

permeability decreases with the z-directional characteristic length (roughness height), yet 

increases with both x-directional length (roughness length) and y-directional length (roughness 

width). For the current geometric parameters and electrolyte properties, (I) compared with the 

isotropic structure case, i.e. the ratio equals unit, the permeability will be lower once the 

roughness height (z length) is larger; otherwise the permeability will be higher; (2) the larger x-

directional length (the fluid direction) will enhance the permeability more than the y-directional 

length. 
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Fig. 9 Anisotropic geometry effects on electroosmotic permeability for different directional 

characteristic length ratios. The x axis denotes the specified directional characteristic length ratio 

to the other two ones. The roughness number density nR =36/flm2 
(Sd =0.0 I) and the roughness 

total volume fraction V;1=0.05. The bulk ionic concentration nO) is 0.3x I0-5 M. 
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D. Debye length effect 

Theoretical studies on electroosmotic flows in rough channels have been reported for both thin 

and thick double layers 28. However it is a big challenge to do similar analyses when the Debye 

length is comparable to the characteristic length of roughness because the linear assumptions are 

not valid any more. Using our numerical framework, we can investigate the Debye length effects 

on the electroosmotic flows in rough microchannels when the Debye length is close to the 

roughness size. 

We generate the microstructure of a rough microchannel with the parameters: Sd =0.0 I, 

Dr: D,. : D= == 1:] : 1 and V;/ =0.05. The characteristic height of roughness (Lroughnes,) can be then 

calculated from Eq. (l3b), i.e. 88.3 nm when the channel width is ] flm. We change the bulk 

ionic concentration n", from 3.3 to 0.3 x 10-5 M to vary the dimensionless Debye length 

(LFIJI I Lmllg/IIl",,) from 0.57 to 1.91. 
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U6 I I 
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Fig. 10 Dimensionless electroosmotic permeability for different Debye length. The roughness 

geometry is generated with nu=36lflm2 (S<I=O.O]) and VR=0.05, which lead to a fluctuation of 
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Ke.roUKh at around 3%. The bulk ionic concentration ndJ varies from 0.3 to 3.3 x 10.5 M to change 

the Debye length. 

The Debye length effect on the electroosmotic permeability in rough microchannels is shown 

in Fig. 10 when the Debye length is close to the roughness characteristic length. The 

permeability is also normalized by the corresponding permeability in a smooth channel for the 

same ionic concentrations. The results indicate: (J) the dimensionless electroosmotic 

permeability decreases with the dimensionless Debye length monotonically at the current range; 

(2) the electroosmotic permeability of the rough channel may be greater than that of the smooth 

channel when the Debye length is smaller than the roughness characteristic length. The reason 

may lie in the assumption of constant zeta potential for the homogeneously charged surfaces of 

all roughness elements. In fact the geometric curvature of rough surfaces will lead to an 

increasing charge density on the surface for a constant zeta potential, which may cause an 

enhancement of the electroosmotic flow. Therefore the final electroosmotic permeability in a 

rough channel is influenced by two competing factors from the rough surfaces: enhanced by the 

increased surface charge density and weakened by the increased geometric resistance. In our 

case, these two factors obtain a balance when the Debye length is around the roughness 

characteristic length. Since such a phenomenon has rarely been reported in experimental data, 

the mechanism will be further investigated in the future work. 

V. Conclusions 

In this contribution, we developed a numerical framework to model the electrokinetic transport 

in microchannels with random roughness. The three-dimensional microstructure of the rough 

channel is generated by a random generation-growth method with three statistical parameters to 

control the geometric characteristics of the roughness. The governing equations for the 
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electrokinetic transport are then solved by a high-efficiency lattice Poisson-Boltzmann method in 

the complex geometries. 

The electrokinetic transport In the rough channel is greatly influenced by the geometric 

characteristics of the roughness. For a given total volume fraction of roughness elements, a 

higher number density does not only result in a greater electroosmotic permeability through the 

channel, but also leads to a lower fluctuation due to the random factors. The electroosmotic 

permeability increases with the roughness number density nearly at a logarithmic law for a given 

volume fraction of roughness, but decreases with the volume fraction of roughness for a given 

roughness number density. For both given volume fraction and number density of roughness, the 

electroosmotic permeability is enhanced by the increases of the characteristic length along the 

external electric field direction (x) or decreases of the length of the direction across the channel 

(z). For a given microstructure of rough microchannel, the electroosmotic permeability decreases 

with the Debye length. Compared with the corresponding flows in a smooth channel, the rough 

surface may enhance the electrokinetic transport when the Debye length is smaller than the 

roughness characteristic height under the assumption of constant zeta potential for all surfaces. 

The present results may improve the understanding of the electrokinetic transport characteristics 

in microchannels. 
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