Final evaluation of characterizing pipe-over-pack containers using high efficiency neutron counters

PDF Version Also Available for Download.

Description

Nondestructive assay (NDA) measurements of Transuranic (TRU) waste at Los Alamos National Laboratory (LANL) packed in Pipe-over-Pack Containers (POC) contain a number of complexities. The POC is highly attenuating to both gamma rays and neutrons which presents a difficult waste matrix for correct quantification of material in the container. Currently there are a number ofPOC containers at LANL that require evaluation for shipment to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. Updated data has been evaluated that finalizes the evaluation of characterizing Pipe-Over-Pack Containers. Currently at LANL, a single instrument has been used to explore the appropriateness of ... continued below

Creation Information

Carson, Pete; Stanfield, Sean B; Wachter, Joe; Cramer, Doug & Harvill, Joe January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Nondestructive assay (NDA) measurements of Transuranic (TRU) waste at Los Alamos National Laboratory (LANL) packed in Pipe-over-Pack Containers (POC) contain a number of complexities. The POC is highly attenuating to both gamma rays and neutrons which presents a difficult waste matrix for correct quantification of material in the container. Currently there are a number ofPOC containers at LANL that require evaluation for shipment to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. Updated data has been evaluated that finalizes the evaluation of characterizing Pipe-Over-Pack Containers. Currently at LANL, a single instrument has been used to explore the appropriateness of both passive neutron and quantitative gamma ray methods for measuring POC's. The passive neutron approach uses the Reals coincidence count rate to establish plutonium mass and other parameters of interest for TRU waste. The quantitative gamma ray method assumes a homogeneous distribution of radioactive source material with the surrounding material throughout the drum volume. Drums are assayed with a calibration based on the known density of the matrix. Both methods are supplemented by a simultaneous isotopic measurement using Multi-Group Analysis (MGA) to determine the plutonium isotopic composition. If MGA fails to provide a viable isotopic result Fixed Energy Response function Analysis with Multiple efficiencies (FRAM) has been used to replace the MGA results. Acceptable Knowledge (AK) may also be used in certain instances. This report will discuss the two methods in detail. Included in the discussion will be descriptions of the setup parameters and calibration techniques for the instrument. A number of test measurements have been performed to compare HENC data with certified historical data. Empty POCs loaded with known sources have also been measured to determine the viability of the technique. A comparison between calorimetry data, historical measurements and HENC data will also be performed. The conclusion will show that the current calibration on the HENC units is viable for analysis of POCs.

Source

  • Waste Management 09 ; March 3, 2009 ; Phoenix, AZ

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-00315
  • Report No.: LA-UR-09-315
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956524
  • Archival Resource Key: ark:/67531/metadc931045

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carson, Pete; Stanfield, Sean B; Wachter, Joe; Cramer, Doug & Harvill, Joe. Final evaluation of characterizing pipe-over-pack containers using high efficiency neutron counters, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc931045/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.