Snapping Supernovae at z>1.7

PDF Version Also Available for Download.

Description

We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, ... continued below

Creation Information

Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V. & Perlmutter, Saul July 3, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7<z<3 SNe Ia in controlling evolutionary systematics relative to what SNAP can already achieve at z<1.7. Synergy with observations from JWST and thirty meter class telescopes afford rich opportunities for advances throughout astrophysics.

Source

  • Journal Name: Astroparticle Physics; Related Information: Journal Publication Date: March 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-61879
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 962913
  • Archival Resource Key: ark:/67531/metadc931018

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 3, 2006

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 18, 2016, 3:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V. & Perlmutter, Saul. Snapping Supernovae at z>1.7, article, July 3, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc931018/: accessed December 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.