
Final Report
March 31, 2007

Center for Programming Models for

Scalable Parallel Computing
(UIUC subgroup)

DOE DEFC 02-01 ER25508
September 15, 2001 --- September 14, 2006

Marianne Winslett
Department of Computer Science

University of Illinois
201 N. Goodwin Avenue

Urbana, IL 61801
Work: (217) 333-3536
FAX: (217) 265-6494

winslett@uiuc.edu

Michael Folk

National Center for Supercomputing Applications
University of Illinois

605 East Springfield Avenue
Champaign, IL 61820
Work: (217) 244-0647
mfolk@ncsa.uiuc.edu

mailto:winslett@uiuc.edu

 2

1 Summary

The mission of the Center for Scalable Programming Models (Pmodels) was to create
new ways of programming parallel computers that are much easier for humans to
conceptualize, that allow programs to be written, updated and debugged quickly, and that
run extremely efficiently---even on computers with thousands or even millions of
processors. At UIUC, our work for Pmodels focused on support for I/O in a massively
parallel environment, and included both research and technology transfer activities:

1. Research
a. Speeding up writes through active buffering
b. Data-format-independent data management
c. Data-format-independent buffer management
d. Bitmap indexes
e. Log-based I/O
f. I/O-aware compilation

2. Technology transfer: making new I/O techniques available to a wider audience.

a. Log-based I/O (published on SourceForge)
b. Data migration (incorporated into the ROMIO parallel I/O library)
c. Bitmap indexes (available to HDF users)
d. Metadata handling (incorporated in HDF)
e. Arithmetic operations during I/O (incorporated in HDF), and support for

formulas in HDF

3. Synergistic activities with DoE

We describe each of these activities in more detail below, including lists of the
publications that resulted from each activity.

2 Active Buffering

This grant supported our work on active buffering, a technique that exploits idle resources
on parallel computers to hide the cost of writes from parallel application programs. We
developed active buffering in response to the I/O needs of GENx, a state of the art
parallel rocket simulation code. Active buffering reduces or even eliminates the
application-visible cost of I/O, by taking advantage of available idle memory on
processors. Experiments with GENx and other applications showed that active buffering
is very effective, as documented in the papers listed below.

Working with the HDF developers in a technology transfer activity, we concluded that
the best place to put active buffering was in the ROMIO layer that underlies HDF.
Because ROMIO’s architecture is significantly different from Panda’s, we reimplemented
active buffering in ROMIO and evaluated its performance. The results of the evaluation,
as well as other recent results on active buffering, were presented in papers listed below.
Overall, we found that active buffering provides significant potential performance upside

 3

for ROMIO clients, with little overhead. Our implementation resided in the platform-
independent layer of ROMIO, thus making active buffering available on all ROMIO
platforms without extra effort.

To make these facilities available in a released version of ROMIO, active buffering had
to work with all the calls in ROMIO’s API---not just with collective writes, as in our
earlier work. For example, what happens if a processor writes a piece of data
collectively, then reads it back in a non-collective call, and the data are still in the active
buffers at the time of the second call? We determined that active buffering violated
several undocumented concurrency control assumptions embedded in the ROMIO
library, regarding the semantics of possible sequences of collective and non-collective
calls that write and then read the same piece of data. For that reason, active buffering
will not be incorporated in the released version of ROMIO.

Publications:

X. Ma, M. Winslett, J. Lee, and S. Yu. Faster Collective Output through Active
Buffering. In Proceedings of the 2002 International Parallel and Distributed Processing
Symposium. April 2002. (Introduces active buffering)

J. Lee, X. Ma, M. Winslett, and S. Yu. Active Buffering Plus Compressed Migration: An
Integrated Solution to Parallel Simulations’ Data Transport Needs. In Proceedings of the
16th ACM International Conference on Supercomputing, June 2002. (Active buffering
combined with data migration)

Xiaosong Ma. Hiding Periodic I/O Costs in Parallel Applications. PhD thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, 2003.

X. Ma, J. Jiao, M. Campbell, and M. Winslett. Flexible and Efficient Parallel I/O for
Large-Scale Multi-component Simulations. Proceedings of The 4th Workshop on Parallel
and Distributed Scientific and Engineering Computing with Applications, in conjunction
with the 2003 International Parallel and Distributed Processing Symposium, April 2003.
(Application experience with active buffering)

X. Ma, M. Winslett, J. Lee, and S. Yu. Improving MPI-IO Output Performance with
Active Buffering Plus Threads. Proceedings of the 2003 International Parallel and
Distributed Processing Symposium, April 2003. (Active buffering in a server-less
architecture, such as ROMIO’s)

X. Ma, J. Lee, M. Winslett, “High-level buffering for hiding periodic output cost in
scientific simulations,” IEEE Transactions on Parallel and Distributed Systems, volume
17, issue 3, March 2006, pp. 193-204.

3 Data-format-independent Data Management

Dramatic improvements in scientific instruments, as well as increasingly realistic
simulations on massively parallel computers, have resulted in massive amounts of data
and their associated data management problems. The large amounts of data necessitate
specialized data storage formats to store and retrieve data in reasonable amounts of time.
Several generic storage formats (e.g., HDF, netCDF, CGNS) and systems specialized for

 4

particular scientific realms (e.g., ROOT, FITS) have been developed to solve this
problem. To analyze and query data stored in such formats, the application developer
(e.g., visualization tool developer or simulation code writer) has to write functions and
programs using the interfaces available for those formats. This is a very time consuming
process, and the resulting programs are specific to the format used. Furthermore, usually
the application developer is a scientist who would rather spend time investigating
scientific questions instead of dealing with data management headaches. Such developers
need a system that provides data-format-independent, application-tailorable, loosely-
coupled facilities for buffering, caching, indexing, querying, concurrency control and
metadata management. The goal of our Maitri data management system is to provide
such facilities.

Maitri provides a set of lightweight, mix-and-match components that developers can
combine as needed to provide holistic data management facilities for a particular
application. To provide format independence, Maitri introduces the concept of user-
defined logical blocks. In traditional data management systems, a block consists of one or
more logically consecutive blocks of a file; but in Maitri a block is a user-defined
aggregate of data. The user defines the functions required to extract data from these
logical blocks. The internals of the Maitri system operate on these blocks and hence
require no knowledge of the format of storage. This provides the user with format
independence, at the cost of having him or her write the interfaces to access data from the
logical blocks. User-defined logical blocks were used to provide format independence in
the GODIVA buffer manager developed under this grant in previous years, and an
extended version of GODIVA is the buffer manager for Maitri, as discussed below.
Maitri also uses the bitmap indexing facilities discussed below. The publications listed
below focus on the overall architecture of Maitri; publications that focus specifically on
buffering or indexing in Maitri are discussed in subsequent sections of this report.

Publications:

R. R. Sinha, S. Mitra, and M. Winslett, Maitri: Format Independent Data Management
System for Scientific Data. Proceedings of the 3rd International Workshop on Storage
Network Architecture and Parallel I/O, 2005.

R. Sinha, A. Termehchy, and M. Winslett, Maitri: Managing Large Scale Scientific Data,
demonstration and paper at Conference on Innovative Database Research, January 2007.

4 Data-format-independent Buffer Management

We designed, implemented, and evaluated light-weight buffering facilities that are
intended for use in I/O-intensive programs such as visualization facilities. These
buffering facilities make no assumptions about the format of the data being buffered;
instead, the application developer writes a small amount of code that describes how to
read and write data in the underlying storage format. In return, the application developer
has at their disposal a library of traditional buffering commands and hints, allowing them
to describe which data should be fetched or prefetched into memory and when. Hints
also allow the application developer to describe which data can or must be written back
to disk, and when. With such a library, an application developer need not develop his or
her buffering facilities.

 5

The resulting buffering library, GODIVA, has been evaluated in the context of a parallel
visualization tool, ROCKETEER, used by the Center for Simulation of Advanced
Rockets at UIUC. GODIVA simplified data management for the ROCKETEER authors
and improved I/O performance by 25-45% in early tests. GODIVA was released in a
subsequent version of ROCKETEER. In addition, an extended version of GODIVA
forms the buffer management and block management layers of Maitri.

Publication:

X. Ma, M. Winslett, J. Norris, J. Jiao, and R. Fiedler. GODIVA: Lightweight Data
Management for Scientific Visualization. Proceedings of the 20th International
Conference on Data Engineering, 2004.

5 Bitmap indexes

Bitmap indexes were developed to meet the need for quick data retrieval in data
warehousing applications. Somewhat surprisingly, bitmap indexes also hold great
potential for indexing scientific data---much more so than KD trees, R trees, quad trees,
B-trees, and so on. These traditional indexes are not efficient in the high-dimensional
data sets that are common in scientific research, as even multidimensional indexes like R-
Trees degrade in performance if the number of dimensions is too high.

We created a new kind of bitmap index, called a multiresolution bitmap index, and
adopted it as the indexing technology in Maitri. We showed that multiresolution bitmap
indexes are very effective at reducing the run times for real and simulated applications,
using data from the Sloan Digital Sky Survey and other sources. Further, multiresolution
bitmap indexes occupy only about twice the space of the data that they index; thus they
are much smaller than traditional tree-based indexes.

In subsequent conversations with researchers pursuing “big science”, we learned that the
observational science with the highest data rates cannot afford to add more than 20-30%
of the space occupied by data, in order to support indexing. In collaboration with Arie
Shoshani’s group at LBL, we developed a way to cut the footprint of a bitmap index
down to 25% of the size of the data being indexed, while still offering excellent data
retrieval performance for real-world workloads. We dubbed the resulting technique
adaptive bitmap indexes.

The code for adaptive and multiresolution bitmap indexes is being released through The
HDF Group’s web site, and will be incorporated into HDF in the future.

Publications:

R. R. Sinha, S. Mitra, and M. Winslett, Bitmap Indexes for Large Scientific Data Sets: A
Case Study. Proceedings of the 20th IEEE International Parallel & Distributed
Processing Symposium, 2006.

R. R. Sinha and M. Winslett, Multi-resolution Bitmap Indexes for Large Scientific Data
Sets. Submitted to ACM Transactions on Database Systems in 2006.

http://dais.cs.uiuc.edu/pubs/winslett/godiva.ps
http://dais.cs.uiuc.edu/pubs/winslett/godiva.ps
http://dais.cs.uiuc.edu/pubs/winslett/godiva.ps

 6

R. R. Sinha, M. Winslett, J. Wu, K. Stockinger, A. Shoshani, Adaptive Bitmap Indexes
for Space-Constrained Systems, submitted for conference publication. (Introduces
adaptive bitmap indexes.)

6 Log-based I/O

The ever-increasing gap between the processor and I/O speeds of computer systems has
become a problem for I/O intensive applications like scientific simulations. While the
growing computation power has enabled scientists to simulate larger phenomena, storing
the data to disk for subsequent visualization is increasingly problematic. The challenge is
especially acute for cluster computers, which lack the kind of I/O and optimizations
found in traditional supercomputers.

Within the Pmodels project, we worked to find ways to improve the I/O performance of
these simulation applications by exploiting their special I/O characteristics. These
simulations write a lot of data but do not read them back during the course of the
simulation. Furthermore, different processes of the simulation either write to different
files or disjoint locations of the same file, so concurrency control (order of writing) is
also not an issue.

Our past work on active buffering, also supported by this grant, exploited these
characteristics and the presence of idle resources on processors to hide the cost of I/O
from the application. Our work on log-based I/O extends that idea in a new direction.
Our approach is to asynchronously defer the file system write calls made by the
application. We create a log of all the write calls executed by the simulation, at the C
library level. We store this log on each processor’s local disk, and asynchronously
transfer/replay the log to the file server that is the ultimate destination of the data. The
asynchronous copy operation prevents the file server from getting overloaded from
simultaneous calls by the application. Our performance results with synthetic and real
applications were quite good (see publication below). We incorporated log-based I/O
into a small stand-alone library and released on SourceForge. The library is extremely
easy to install and use; we have used it in our own subsequent projects as a quick-and-
easy way to improve performance for write-intensive parallel applications.

Publications:

S. Mitra, R. R. Sinha, and M. Winslett, X. Jiao, An Efficient, Non Intrusive, Log Based
I/O Mechanism for Scientific Simulations on Clusters. Proceedings of the 21st
International Conference on Cluster Computing, 2005.

Log-based I/O (LBIO) release: http://sourceforge.net/projects/lbio/

7 I/O-aware Compilation

The idea behind I/O-aware compilation is to expand a parallel programming language to
include simple high-level I/O commands (e.g., "output this array to this data repository"),
and then make use of a compiler for that language that knows how to map those calls to
library-specific I/O calls (e.g., calls to HDF or netCDF to write out the specified array),

 7

and also knows how to optimize such calls. For example, the compiler can turn such calls
into asynchronous I/O calls that can be started as soon as possible and terminated as late
as possible, to maximize the overlap between I/O activities and other program activities.
Our group and the Pmodels Co-Array Fortran compiler group led by John Mellor-
Crummey developed a plan for how to realize such calls in Co-Array Fortran, using
Panda and HDF as the underlying I/O libraries.

In subsequent experiments, we determined that I/O-aware compilation does not offer
performance benefits beyond those obtained by the use of active buffering, in typical
scientific codes. The reason is that I/O-aware compilation moves all I/O-related activities
to a separate thread, which runs in the background. However, many I/O activities in a
high-performance code require communication between processors, typically because an
array’s in-memory distribution across processors is different from the desired distribution
on disk. Moving these communication activities to the background hurts typical
applications, because they have to wait for their turn to use the communication facilities.
The resulting switching between threads can slow down overall application run time. We
found that I/O-aware compilation did tend to increase run times slightly. In contrast,
active buffering performs communication-intensive activities in the foreground, avoiding
this slowdown problem.

As these results were negative, we did not seek to publish them. However, we
recognized that I/O-aware compilation could still be helpful for out of core codes, and
marked that as a possible future direction for research. Further, and with the potential for
greater impact, we recognized that today’s hyperthreaded architectures may make it
possible for communication-intensive I/O activities to run in the background, without
causing significant slowdowns for applications.

8 Data Migration

As part of the Pmodels project, we worked on technology transfer of our results on how
to migrate data long distances effectively, using on-the-fly parallel data compression and
other techniques. Through a postdoc shared with the ROMIO group at Argonne National
Laboratory, we incorporated those facilities into ROMIO. These facilities form a new
module at the ADIO level in ROMIO and are available to all ROMIO users.

Publication:

J. Lee, M. Winslett, X. Ma, and S. Yu. Enhancing Data Migration Performance via
Parallel Data Compression. In Proceedings of the 2002 International Parallel and
Distributed Processing Symposium. April 2002. (original data migration paper)

J. Lee, X. Ma, M. Winslett, and S. Yu. Active Buffering Plus Compressed Migration: An
Integrated Solution to Parallel Simulations’ Data Transport Needs. In Proceedings of the
16th ACM International Conference on Supercomputing, June 2002. (Active buffering
combined with data migration)

 8

Jonghyun Lee. Supporting I/O for Remote Visualization of High-Performance Scientific
Simulations. PhD thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, May 2003.

J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett, “RFS: Efficient and flexible remote
file access for MPI-IO,” Proceedings of the International Conference on Cluster
Computing, San Diego, September 2004. (Data migration in ROMIO)

9 Metadata Handling in HDF

Traditionally, HDF has stored metadata in the same file with data. This architecture has
its advantages, but it also has several limitations. For example, the collocation of data
and metadata in a single file may lead to increased numbers of seeks as applications write
out data and the associated metadata. HDF users are storing more and more metadata,
often describing smaller and smaller objects. This proliferation of metadata has led to
scalability problems with the original implementation of metadata handling in HDF 5.
The collocation of data and metadata may make it more difficult to treat metadata and
data differently (e.g., collective write operations for data, coupled with non-collective
reads and writes on metadata). We have determined that in the long run, it is better to
allow metadata to reside in a separate file if desired, or in the same file with the data, as
appropriate.

To include this flexibility in HDF, we rearchitected the virtual file driver by separating
logical Virtual File Device operations from physical VFD operations. For example, the
split file driver can write metadata to one file and raw data to another, but this is a logical
operation. The decision on how to actually perform this write operation (e.g., raw data in
parallel and metadata in serial) is made at the physical level of HDF. The resulting new
facilities eliminate performance problems associated with metadata handling, and provide
the basis for scalable metadata handling in HDF for some time to come. These facilities
are available in the current release of HDF.

10 Arithmetic Operations During I/O, and Support for

Formulas

HDF and DRA users have been requesting facilities that allow them to perform simple
arithmetic operations on data during I/O. As perhaps the simplest example, suppose that
weather data is stored using the Fahrenheit scale, but is needed in an application in the
Centigrade format. We developed facilities that allow HDF users to have the conversion
applied when the data is read and written.

As the first step, we determined an architecture for incorporating such a facility into
HDF, through a user-supplied callback function that performs the arithmetic operations.
We determined the best place for such a facility to reside in HDF, in the lower levels of
the HDF library. This positioning raised certain other issues, such as how to pass the
needed data type information down to that level of the library, which normally views the

 9

data as a byte stream. We addressed those issues and incorporated the new facilities into
HDF.

Next, we built on the new facilities to develop an approach to support “formula” datasets.
The idea is that a user can define a data object of type formula, store it in an HDF file,
retrieve it when needed, and apply the formula to HDF data values to create new data
values on the fly. These facilities are currently under development.

11 Synergistic Activities with DoE

Our portion of the Pmodels project included funds for approximately one HDF developer
and one PhD student, along with partial support for their supervisors. The HDF Group
has had tight ties to the DoE Laboratories for many years, as HDF is widely used inside
DoE; we do not elaborate on those ties here. In addition, the PhD students supported by
this work have developed close ties with the Department of Energy.

• Xiaosong Ma, the student who developed active buffering and data-format-
independent buffer management, has had a 50% position at ORNL since
graduation. (She also has a 50% appointment in the Department of Computer
Science at North Carolina State University.) Xiaosong received a DoE Early
Career Award in 2006.

• Jonghyun Lee, who developed facilities for data migration and incorporated them
into ROMIO, was a postdoc at Argonne National Laboratory before assuming his
current position at Oracle.

• Rishi Sinha, the student who has been working on bitmap indexing, visited Arie
Shoshani’s group at Lawrence Berkeley Laboratory for an extended period.
During this time he developed adaptive bitmap indexing, in collaboration with
LBL researchers.

	Summary
	Active Buffering
	Data-format-independent Data Management
	Data-format-independent Buffer Management
	Bitmap indexes
	Log-based I/O
	I/O-aware Compilation
	Data Migration
	Metadata Handling in HDF
	Arithmetic Operations During I/O, and Support for Formulas
	Synergistic Activities with DoE

