Magnetic order and interfacial coupling in oxide thin films and heterostructures probed with soft x-ray dichroism

PDF Version Also Available for Download.

Description

The combination of novel magnetic properties induced by reduced dimensionality and strong magnetic interactions across interfaces leads to intriguing new properties in magnetic hetero- and nanostructures not observed in the constituent materials in bulk form. It is the careful optimization of the characteristics of the individual layers as well as the magnetic coupling across the interface that allows us to control the magnetic properties and tailor them for devices, e.g., in information storage and processing technology. Soft x-ray magnetic spectroscopies can make unique contributions to improving our understanding of complex magnetic nanostructures since these techniques provide elemental, valence- and site-symmetry ... continued below

Creation Information

Arenholz, Elke & van der Laan, G. February 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The combination of novel magnetic properties induced by reduced dimensionality and strong magnetic interactions across interfaces leads to intriguing new properties in magnetic hetero- and nanostructures not observed in the constituent materials in bulk form. It is the careful optimization of the characteristics of the individual layers as well as the magnetic coupling across the interface that allows us to control the magnetic properties and tailor them for devices, e.g., in information storage and processing technology. Soft x-ray magnetic spectroscopies can make unique contributions to improving our understanding of complex magnetic nanostructures since these techniques provide elemental, valence- and site-symmetry specific information with high sensitivity and tunable probing depth. X-ray magnetic circular dichroism (XMCD) is sensitive to (unidirectional) ferromagnetic order, while x-ray magnetic linear dichroism (XMLD) can also detect (uniaxial) antiferromagnetic order. A crystalline electric field with cubic symmetry induces only a weak angular dependence in XMCD spectra [1] but can cause a very pronounced anisotropy in XMLD spectra [2]. Furthermore, non-magnetic sites with a distorted local cubic symmetry can give rise to an x-ray linear dichroism (XLD). In this presentation, we discuss how to distinguish between the individual contributions to soft x-ray dichroism spectra in order to extract the wealth of information about magnetic thin films, interfaces and hetero- and nanostructures contained in the data [3, 4, 5] We determined the magnetic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO)/La{sub 0.7}Sr{sub 0.3}FeO{sub 3} (LSFO) superlattices with 6 unit cell thick sublayers using soft x-ray magnetic dichroism [5]. Circular dichroism was employed to study the characteristics of the ferromagnetic LSMO layer indicating a reduced magnetic ordering temperature of 200 K compared to the bulk value of 360 K. Linear dichroism is used to analyze the antiferromagnetic order in the LSFO layers which persists up to the bulk Neel temperature near 400 K. Our experiments clearly show that when the magnetization of the LSMO layer is aligned with a magnetic field, a torque is created on the Fe moments in the LSFO layer through exchange coupling at the interface realigning the Fe moments as well. Through comparison with theoretical calculations we are able to show that independent of the LSMO magnetization direction in the sample surface plane, the Fe moments are always oriented perpendicular to the Mn moments. This perpendicular alignment is due to the frustrated exchange coupling at the interface and the weak anisotropy in the thin LSFO layer. Revisiting previous XMLD studies of the Co/NiO(001) interface taking the impact of the crystal electric field on the XMLD into account for the first time, we show that NiO(001) exhibits a crystallographic and magnetic domain structure near the surface that is identical to that of the bulk. Upon Co deposition perpendicular coupling of Co and Ni moments is observed [2, 3] that persists even in the presence of uncompensated interface moments. We also measured the asphericity and the energy splitting of the 4f states in EuO thin films [4] - a material with fascinating properties and of technological importance for spintronics applications - using XMLD. Our measurements, which are confirmed by multiplet calculations, show that there is significant 4f anisotropy. This suggests that pinning of the f states by the local environment becomes feasible and can be tuned by external conditions, chemical doping, and strain for use in device applications. Moreover, we will discuss the impact of epitaxial strain on the magnetic properties and XMLD spectra of complex oxide thin films.

Source

  • IEEE International Magnetics Conference, Sacramento, CA, May 4 - 8, 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1706E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 951112
  • Archival Resource Key: ark:/67531/metadc930941

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Jan. 4, 2017, 4:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Arenholz, Elke & van der Laan, G. Magnetic order and interfacial coupling in oxide thin films and heterostructures probed with soft x-ray dichroism, article, February 1, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc930941/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.