Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method

Science Team Meeting

Ibrahim Reda

Tom Stoffel

Date 3/15/2010

NREL/PR-3B0-47756
Overview to address some ECR comments

Thermocouple/thermopile
Pyrgometer thermodynamics
NREL & PMOD equations
NREL calibration method
Conclusion.
Effect of increased junctions on thermopile

\[V_{tp} = n \cdot s \cdot e \cdot (T_r - T_{ref}) \]

where,

- \(n \) = number of junctions
- \(s \) = Seebeck coefficient
- \(e \) = thermopile efficiency. \(e = 1 \) for \(n = 1, 2 \), or small number

\(n \uparrow \) to increase signal/noise ratio, thermal conductivity between receiving & reference junctions \(\uparrow \), \(T_{ref} \) effect on \(T_r \) \(\uparrow \), therefore \(e \neq 1 \)

If \(n \) is not optimum \(\rightarrow V_{tp} \downarrow \), \(n \) too large \(V_{tp} \sim \) zero volt
Effect of increased thermal conductivity on PIRs

\[V_{tp} = n.s.e(T_r - T_{case}) \]

where \(e = 0.65 \) for PIRs, measured by John Hickey for PIRs with \(n \sim 56 \) junctions and Seebeck coefficient \(\sim 39 \, \mu V/K \), reported in:

therefore,

\[T_r = T_{case} + 0.0007044 \, V_{tp} \]
Simplified pyrgeometer thermodynamics

- Net Irradiance = \(W_{\text{net}} = K_1 \cdot V_{tp} \)
 \[= W_{\text{incoming}} - W_{\text{outgoing}} = W_{\text{transmitted}} + K_3 \cdot (W_{\text{dome}} - W_r) - K_2 \cdot W_r \]
 where \(W_{\text{transmitted}} = \tau \cdot W_{\text{downwelling}} \), and \(\tau = \text{Dome+Filter transmittance} \) is assumed to be constant.

Other equations are based on assumptions: \(e = 1 \) and \(W_{\text{outgoing}} = W_{\text{case}} \) instead of \(W_r \) !?!

- Arrange the above equation and re-name constants, therefore,
 \[W_{\text{downwelling}} = K_1 \cdot V_{tp} + K_2 \cdot W_r - K_3 \cdot (W_{\text{dome}} - W_r) \]

\(K_0 \) is reserved for troubleshooting regressions & blackbody calibrations only.
Comparing NREL and PMOD equations

NREL Equation:

\[W_{\text{downwelling}} = K_1 \cdot V_{tp} + K_2 \cdot W_r - K_3 (W_{dome} - W_r) \]

Expansion of NREL Equation to compare with PMOD equation:

1. \(T_r = T_{\text{case}} + 0.0007044 \cdot V_{tp} \) ….. for PIRs
2. \[W_{\text{downwelling}} = K_1 \cdot V_{tp} + K_2 \cdot \sigma (T_{\text{case}} + 0.0007044 \cdot V_{tp})^4 - K_3 [W_{dome} - \sigma (T_{\text{case}} + 0.0007044 \cdot V_{tp})^4] \]
 Expand \((T_{\text{case}} + 0.0007044 \cdot V_{tp})^4\) using \((a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)
3. Arrange terms and re-name coefficients,
 \[W_{\text{downwelling}} = K_1 \cdot V_{tp} + k'_1 \cdot T_{\text{case}}^3 \cdot V_{tp} + k_2 \cdot W_{\text{case}} - k_3 (W_{dome} - W_{\text{case}}) + k_4 \cdot T_{\text{case}}^2 \cdot V_{tp}^2 + k_5 \cdot T_{\text{case}} \cdot V_{tp}^3 + k_6 \cdot V_{tp}^4 \]

PMOD Equation:

\[W_{\text{downwelling}} = V_{tp}(1 + k_1 \cdot \sigma \cdot T_{\text{case}}^3) / c + k_2 \cdot W_{\text{case}} - k_3 (W_{dome} - W_{\text{case}}) \]
 \[= K_1 \cdot V_{tp} + k'_1 \cdot T_{\text{case}}^3 \cdot V_{tp} + k_2 \cdot W_{\text{case}} - k_3 (W_{dome} - W_{\text{case}}) \]

! PMOD equation = NREL equation without \(k_4, k_5, \) and \(k_6 \) terms!

From many comparisons, \(U_{95} \) using NREL or PMOD equation = (1 to 3) \(W/m^2 \) w.r.t. WISG
NREL Calibration Procedure

Procedure is developed after many comparisons/validations with PMOD/NOAA. Calibration is performed outdoor using a group of reference pyrgeometers with traceability to consensus reference, WISG.

Recommended Measurement Equation:

\[W_{\text{downwelling}} = K_1 V_{tp} + K_2 W_r - K_3 (W_{dome} - W_r) \]

Process:

1. \(V \) = minimum negative magnitude (Cloudy sky), adjust \(K_2 \) to minimize the difference between pyrgeometer under test (PUT) irradiance and reference irradiance.

2. \(V \) = maximum negative magnitude (Clear sky), adjust \(K_1 \) to minimize the difference between the PUT irradiance and reference irradiance.

3. Adjust \(K_3 \) to minimize the scatter of the differences between PUT irradiance and reference irradiance.

Future software development might include/evaluate regression, with uniform sets of data!! to calculate the calibration coefficients.
At least 40 pyrgeometers were calibrated using NREL method with uncertainty $U_{95} < 3 \text{ W/m}^2$ with respect to WISG, for all sky conditions, e.g.
Conclusions

NREL method achieves uncertainty of $< 3 \text{ W/m}^2$ for all sky conditions

NREL equation accounts for the pyrgeometer thermodynamics

Since $T_r = T_{case} + 0.0007044 V_{tp}$, and response time of thermopile is faster than case temperature response, therefore, NREL equation reduces response time of measuring $W_{downwelling}$ needed for fast changes in sky conditions

At present, with the instruments/data-acquisition limitations, all equations might achieve $U_{95} = (1 \text{ to } 3) \text{ W/m}^2$ w.r.t. WISG

In the future, when U_{95} of measuring instruments and consensus reference is reduced, NREL equation might be a good candidate when uncertainty of fractions of W/m^2 is needed

Manufacturers specifications to include thermopile efficiency, e, for accurate K_2 and K_3 derivation.