Influence of shockwave obliquity on deformation twin formation in Ta

PDF Version Also Available for Download.

Description

Energetic loading subjects a material to a 'Taylor wave' (triangular wave) loading profile that experiences an evolving balance of hydrostatic (spherical) and deviatoric stresses. While much has been learned over the past five decades concerning the propensity of deformation twinning in samples shockloaded using 'square-topped' profiles as a function of peak stress, achieved most commonly via flyer plate loading, less is known concerning twinning propensity during non-I-dimensional sweeping detonation wave loading. Systematic small-scale energetically-driven shock loading experiments were conducted on Ta samples shock loaded with PEFN that was edge detonated. Deformation twinning was quantified in post-mortem samples as a function ... continued below

Creation Information

Gray Iii, George T; Livescu, V; Cerreta, E K; Mason, T A; Maudlin, P J & Bingert, J F January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 56 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Energetic loading subjects a material to a 'Taylor wave' (triangular wave) loading profile that experiences an evolving balance of hydrostatic (spherical) and deviatoric stresses. While much has been learned over the past five decades concerning the propensity of deformation twinning in samples shockloaded using 'square-topped' profiles as a function of peak stress, achieved most commonly via flyer plate loading, less is known concerning twinning propensity during non-I-dimensional sweeping detonation wave loading. Systematic small-scale energetically-driven shock loading experiments were conducted on Ta samples shock loaded with PEFN that was edge detonated. Deformation twinning was quantified in post-mortem samples as a function of detonation geometry and radial position. In the edge detonated loading geometry examined in this paper, the average volume fraction of deformation twins was observed to drastically increase with increasing shock obliquity. The results of this study are discussed in light of the formation mechanisms of deformation twins, previous literature studies of twinning in shocked materials, and modeling of the effects of shock obliquity on the evolution of the stress tensor during shock loading.

Subjects

Keywords

STI Subject Categories

Source

  • DYMAT09 Conference ; September 7, 2009 ; Brussels, Belgium

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-00988
  • Report No.: LA-UR-09-988
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956433
  • Archival Resource Key: ark:/67531/metadc930755

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 56

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gray Iii, George T; Livescu, V; Cerreta, E K; Mason, T A; Maudlin, P J & Bingert, J F. Influence of shockwave obliquity on deformation twin formation in Ta, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc930755/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.