Verification of Multiphysics software: Space and time convergence studies for nonlinearly coupled applications

PDF Version Also Available for Download.

Description

High-fidelity modeling of nuclear reactors requires the solution of a nonlinear coupled multi-physics stiff problem with widely varying time and length scales that need to be resolved correctly. A numerical method that converges the implicit nonlinear terms to a small tolerance is often referred to as nonlinearly consistent (or tightly coupled). This nonlinear consistency is still lacking in the vast majority of coupling techniques today. We present a tightly coupled multiphysics framework that tackles this issue and present code-verification and convergence analyses in space and time for several models of nonlinear coupled physics.

Creation Information

Ragusa, Jean C.; Mahadevan, Vijay & Mousseau, Vincent A. May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-fidelity modeling of nuclear reactors requires the solution of a nonlinear coupled multi-physics stiff problem with widely varying time and length scales that need to be resolved correctly. A numerical method that converges the implicit nonlinear terms to a small tolerance is often referred to as nonlinearly consistent (or tightly coupled). This nonlinear consistency is still lacking in the vast majority of coupling techniques today. We present a tightly coupled multiphysics framework that tackles this issue and present code-verification and convergence analyses in space and time for several models of nonlinear coupled physics.

Source

  • International Conference on Mathematics, Computaional Methods & reactor physics (M&C 2009),Saratoga Springs, New York,05/03/2009,05/07/2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-09-15514
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 957534
  • Archival Resource Key: ark:/67531/metadc930754

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 10:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ragusa, Jean C.; Mahadevan, Vijay & Mousseau, Vincent A. Verification of Multiphysics software: Space and time convergence studies for nonlinearly coupled applications, article, May 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc930754/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.