Quasi-zero dimensional CuB2O4: a resonant inelastic X-ray scattering case study

PDF Version Also Available for Download.

Description

We explore the general phenomenology of resonant inelastic scattering (RIXS) using CuB{sub 2}O{sub 4}, a network of CuO{sub 4} plaquettes electronically isolated by B{sup +3} ions. Spectra show a small number of well-separated features, and we exploit the simple electronic structure to explore RIXS phenomenology by developing a calculation which allows for intermediate-state effects ignored in standard approaches. These effects are found to be non-negligible and good correspondence between our model and experiment leads to a simple picture of such phenomenology as the genesis of d {yields} d excitations at the K edge and intermediate-state interference effects.

Creation Information

Hancock, J.N. April 29, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We explore the general phenomenology of resonant inelastic scattering (RIXS) using CuB{sub 2}O{sub 4}, a network of CuO{sub 4} plaquettes electronically isolated by B{sup +3} ions. Spectra show a small number of well-separated features, and we exploit the simple electronic structure to explore RIXS phenomenology by developing a calculation which allows for intermediate-state effects ignored in standard approaches. These effects are found to be non-negligible and good correspondence between our model and experiment leads to a simple picture of such phenomenology as the genesis of d {yields} d excitations at the K edge and intermediate-state interference effects.

Source

  • Journal Name: Submitted to Physical Review B

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14005
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 979040
  • Archival Resource Key: ark:/67531/metadc930704

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 29, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Feb. 17, 2017, 6:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hancock, J.N. Quasi-zero dimensional CuB2O4: a resonant inelastic X-ray scattering case study, article, April 29, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc930704/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.