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1 Introduction

In this document we describe work done under the SciDAC-1 Project National Computational
Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the compu-
tational infrastructure needed to study quantum chromodynamics (QCD). Nearly all high energy
and nuclear physicists in the United States working on the numerical study of QCD are involved
in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Labo-
ratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the senior
participants is given in AppendixA.2. The project includes the development of community soft-
ware for the effective use of terascale computers, and the research and development of commodity
clusters optimized for the study of QCD. The software developed as part of this effort is publicly
available, and is being widely used by physicists in the United States and abroad. The prototype
clusters built with SciDAC-1 funds have been used to test thesoftware, and are available to lattice
gauge theorists in the United States on a peer reviewed basis.

QCD is the component of the Standard Model of subatomic physics that describes the strong
interactions. The Standard Model has been enormously successful; however, our knowledge of
it is incomplete because it has proven extremely difficult toextract many of the most important
predictions of QCD, those that depend on the strong couplingregime of the theory. To do so from
first principles and with controlled systematic errors requires large scale numerical simulations
within the framework of lattice gauge theory. Such simulations are needed to address problems that
are at the heart of the DOE’s large experimental programs in high energy and nuclear physics. Our
immediate objectives are to 1) calculate weak interaction matrix elements of strongly interacting
particles to the accuracy needed to make precise tests of theStandard Model; 2) determine the
properties of strongly interacting matter under extreme conditions, such as those that existed in the
very early development of the universe and are created todayin relativistic heavy ion collisions;
and 3) calculate the masses of strongly interacting particles and obtain a quantitative understanding
of their internal structure. The infrastructure we have built under this grant is essential to achieving
these objectives. Some examples of research carried out with the aid of this infrastructure can be
found in Section4, and a list of paper enabled by it is given in AppendixA.1.
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2 SciDAC-1 Software

Under its SciDAC-1 grant, the U.S. lattice gauge theory community created a unified program
environment that enables its members to achieve high efficiency on a wide variety of high perfor-
mance computers. Among the design goals were to enable usersto quickly adapt codes to new
architectures, easily develop new applications and incorporate new algorithms, and preserve their
large investment in existing codes. These goals were achieved through the development of the
QCD Applications Programming Interface (QCD API), which isillustrated in Fig.1.
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Figure 1: Structure of the QCD API developed under SciDAC-1.

All of the fundamental components of the QCD API have been implemented and are in use on the
U.S. QCDOC hardware at BNL, on both the switched and mesh architecture Pentium 4 clusters at
FNAL and JLab, and on a number of general purpose supercomputers. The QCD API is being used
by a growing number of physicists in the U.S. and abroad. The software code and documentation
can be found at the USQCDhttp://www.usqcd.org/usqcd-software. Here we briefly describe each
of its components.

The QCD API has a layered structure which is implemented in a set of independent libraries.
Level 1 provides the code that controls communications and the single core processor computa-
tions. To obtain high efficiency on terascale facilities, much of this layer may have to be written
in hardware specific assembly language. However versions exist in C and C++ using MPI for
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transparent portability of all application codes.

Message Passing:QMP defines a uniform subset of MPI-like functions with extensions that (1)
partition the QCD space–time lattice and map it onto the geometry of the hardware network, pro-
viding a convenient abstraction for the Level 2 data parallel API (QDP); (2) contain specialized
routines designed to access the full hardware capabilitiesof the QCDOC network and to aid opti-
mization of low level protocols on networks in use and under development on clusters. There is a
basic test suite to verify each implementation.

Linear Algebra: All lattice QCD calculations make use of a set of linear algebra operations in
which the basic elements are three–dimensional complex matrices, elements of the group SU(3).
These operations are local to lattice sites or links and do not involve inter–processor communica-
tions. We have collected them into a single Level 1 library called QLA. The QLA routines can be
used in combination with QMP to develop complex data parallel operations in QDP or in existing
C or C++ code. The C implementation has about 19,000 functions generated in Perl, with a full
suite of test scripts. The C++ implementation makes considerable use of templates, and so contains
only a few dozen templated classes (the required specific classes are generated on demand by the
compiler). For both C and C++ it is important to optimize the code for the most heavily used linear
algebra modules.

Data Parallel Interface: Level 2 (QDP) contains data parallel operations that are built on QMP
and QLA. The C implementation is being used to improve performance of the MILC code, a large,
publicly available suite of applications. Despite the factthat the MILC code has been carefully
optimized over its fifteen year lifetime, rewriting computationally intensive subroutines in QDP
makes a significant improvement in its performance. Chroma,an entirely new application code
base, has been writtendi novoin the C++ implementation of QDP. QDP allows extensive overlap-
ping of communication and computation in a single line of code. By making use of the QMP and
QLA layers, the details of communications buffers, synchronization barriers, vectorization over
multiple sites on each node, etc. are hidden from the user.

Level 3 Subroutines: A very large fraction of the resources in any lattice QCD simulation go
into a few computationally intensive subroutines, most notably the repeated inversion of the Dirac
operator, a large sparse matrix. To obtain the level of efficiency at which we aim, it is necessary to
optimize these subroutines for each architecture. For example, on the QCDOC, the assembly coded
inverter for the Domain Wall and Asqtad quark actions, the two quark formulations that are being
used in initial work, is as high as 42% and 45% of peak, respectively. (The precise performance
depends on the number of lattice sites assigned to each processor). These percentages correspond
to total sustained performances of 4.1 and 4.4 teraflop/s forthe full 12,288 processor machine.
Level 3 codes written with SSE2 instructions achieve up to 3.0 gigaflop/s per processor for the last
cluster built at JLab with SciDAC-1 funds. It has 3.0 GHz dualcore Pentium 4 processors.

Data Management: A very large fraction of the computing resources used in lattice QCD cal-
culations go into Monte Carlo simulations that generate representative configurations of the QCD
ground state. The same configurations can be used to calculate a wide variety of physical quanti-
ties. Because of the large resources needed to generate configurations, the U.S. lattice community
has agreed to share all of those that are generated with DOE resources. To enable this sharing we
have created standards for file formats, and written an I/O library (QIO) that adheres to them. We
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are charter members of the International Lattice Data Grid (ILDG), which is setting a basic set of
meta-data and middleware standards to enable international sharing of data. The U.S. lattice gauge
theory community is fully capable of archiving and retrieving data on the ILDG.

3 Prototype Commodity Clusters

The SciDAC-1 project undertook investigations of commodity hardware for lattice QCD. By se-
lecting the most cost effective and appropriately balancedcombinations of processor and network
interconnect, as opposed to the products which individually had the best performance, and by
taking advantage of the modest requirements for memory sizeand disk bandwidth, the SciDAC-1
project built large scale clusters dedicated to lattice QCDcalculations with better price/performance
than any existing general purpose parallel computing platform. The processors investigated during
the project included Intel Pentium, Xeon, and Itanium, AMD Athlon and Opteron, DEC Alpha,
and IBM PPC970. The project also investigated several high performance networks, including
Myrinet, gigabit ethernet meshes, and Infiniband. Each yearthe most promising technologies were
chosen to build prototype production clusters listed in Table 1.

Site Cluster Processor Network

JLab 2m Xeon (single) Myrinet
JLab 3g Xeon (single) 3D GigE
JLab 4g Xeon (single) 5D GigE
JLab 6n Pentium (dual core) Infiniband

FNAL w Xeon (dual) Myrinet
FNAL qcd Xeon (dual) Myrinet
FNAL pion Pentium (single) Infiniband

Table 1: Prototype production clusters built under SciDAC-1.

The DOE Lattice QCD Computing Project, which started October 2005, is building upon the
experience of the SciDAC-1 cluster effort to procure and operate large scale systems. This project
is planned for FY2006 through FY2009, with funding of $9.2 million from the High Energy and
Nuclear Physics Programs of the DOE. Approximately $6 million of this funding will be used
for commodity hardware, specifically clusters in the first year, and most likely clusters for the
subsequent three years. The designs of the first clusters built by the project in 2006 were derived
directly from the prototype clusters assembled during the SciDAC-1 project.

The prototype clusters from the SciDAC-1 project have proven to be very successful in delivering
physics results. Operation for physics production of many of these clusters, specifically the 3g, 4g,
and 6n clusters at JLab, and the qcd and pion clusters at FNAL,is now part of the facilities project.
These clusters have an aggregate capacity of nearly two teraflop/s.
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4 Research Achievements

In this section we describe a few examples of research achievements enabled in whole or in part
by this grant.

The Role of Sea Quarks

The greatest challenge to performing accurate numerical calculations of quantum chromodynamics
(QCD) is the inclusion of the full effects of sea quarks, quarks that are created and destroyed during
the course of a process, rather than being part of the initialand final states. Only theu, d ands
quarks are light enough so that their sea quarks need to be included. So, over the last five years the
MILC Collaboration has generated an extensive set of gauge configurations, snap shots of the QCD
ground state, that fully include the effects of these sea quarks [1]. The computational resources
needed to generate configurations grows rapidly as the sea quark masses decrease. Although it is
possible to work directly at the mass of thes quark, with current computers it is too expensive to
do so for the much lighteru andd quarks. Instead one generates configurations for a range ofu and
d quark masses, and extrapolates to their physical values using chiral perturbation theory, which
predicts the dependence of physical observables on the light quark masses. Of course the accuracy
of the extrapolation increases as the masses of theu andd quarks decrease, as do the required
computing resources. The MILC configurations have been madepublicly available, and are being
used to study a wide range of physical phenomena. Among the important achievements of the
SciDAC Program has been to encourage sharing of resources and the formation of collaborations
among existing groups.

Figure 2: The ratio of several quantities calculated in lattice QCD to their experimental values.
The panel on the left shows results from the quenched approximation, and that on the right from
full QCD.
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The Fermilab Lattice, HPQCD, MILC and UKQCD Collaborationshave used the MILC configura-
tions to calculate a number of quantities whose values have been precisely determined experimen-
tally [2]. The quantities studied were among the easiest to calculate to high accuracy, so a failure to
obtain agreement with experiment would have indicated a serious problem with the calculational
approach. Results are shown in Fig.2, and compared with ones from the quenched approximation
in which the effects of sea quarks are neglected. Clearly, the inclusion of sea quarks is essential
for obtaining high precision results. This work was described in aNews and Viewsarticle inNa-
ture [3], as well as in aNews Focusarticle inScience[4]. Within the high energy community, it
has been featured inFermi News Today[5], Physics Today[6] and in a cover article in theCERN
Courier [7].

The Strong Coupling Constant

The HPQCD and UKQCD Collaborations have used the MILC configurations to make the first
determination of the strong coupling constantαS that fully includes the effects of sea quarks in the
chiral (physical value of theu andd quark masses) limit [8]. The value ofαS depends on the energy
scale at which it is measured. At high energies, where the coupling is weak, the energy dependence
of αS can be calculated using perturbation theory, but the overall normalization must be determined
by an experiment or a lattice calculation. Results of the HPQCD/UKQCD calculation are shown
in Fig. 3.
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Figure 3: The strong coupling constant as a function of the energy d/a. The plotting symbols
are the lattice data, and the red dashed lines are the perturbation theory results with the overall
normalization one sigma above and one sigma below its central value. The data and curves marked
nf = 3 fully include the effects of the three light sea quarks,u, d ands. Those labelednf = 0
neglect the effects of sea quarks.

It is customary to compare different determinations ofαS at the mass of theZ meson. The lattice
result isαS(MZ) = 0.1170±0.0012. The previous world average, which is comprised of a number
of different experimental determinations and an older lattice one, isαS(MZ) = 0.1176±0.0020 [9].
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Thus, the lattice calculation is consistent with the previous world average, but has somewhat
smaller error bars.

Properties of π and K Mesons

The MILC Collaboration has made an extensive study of the properties ofπ andK mesons. This
work provided an opportunity to check lattice methods to high (2% to 3%) precision, and to cal-
culate phenomenologically important physical quantitiesthat are difficult or impossible to obtain
with controlled errors by other methods. One outcome was thedetermination of the leptonic decay
constants of theπ andK mesons to an accuracy of better than 3% [2, 10]. These calculations
are illustrated in Fig.4. The results for the decay constants in turn led to a new approach for de-
termining the Cabibbo-Kobayashi-Maskawa (CKM) matrix elementVus [11]. (The CKM matrix
describes how quarks couple to the weak interactions. Its elements are fundamental parameters of
the Standard Model of subatomic physics). The current lattice value is|Vus| = 0.2223+26

−14). The
Particle Data Group (2006) givesVus= 0.2257(21) [9] from the K →πµν experimental rate and
non-lattice theory. The lattice results are expected to improve significantly during the coming year.

Figure 4: The pion decay constantvs.quark mass, in units of the scaler1 which is determined from
the static quark potential. Lines through the data points come from a staggered chiral perturbation
theory fit to the entire data set for decay constants and masses. The red line represents the fit
function in “full QCD” after extrapolation of parameters tothe continuum, and with the mass of
the strange sea quark fixed at its physical value. The red plusshows the extrapolated value of the
decay constantfπ, in agreement with experiment (black burst) within systematic errors (blue bar).

This set of calculations also yielded the first evaluation ofthe masses of theu, d andsquarks fully
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taking into account the effects of light sea quarks[10, 12, 13]. These results are particularly signifi-
cant because uncertainty in the strange quark mass has severely limited the theoretical precision of
a variety of phenomenological studies, and determination of the up quark mass addresses the long
standing proposal that this quantity vanishes.

The Axial Charge of the Nucleon

The nucleon axial chargegA is a fundamental property of the nucleon, which governs theβ decay
of a free neutron into a proton, electron, and neutrino. It provides an important test of our ability to
calculate nucleon properties from first principles. The computational challenge in calculatinggA
has been to generate gauge configurations with small enough values of theu andd quark masses to
reliably extrapolate to their physical values and to infinite volume using chiral perturbation theory.
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Figure 5: The axial charge of the nucleongA as a function of the square of the pion mass. The
six red points are the LHPC’s high statistic calculations using MILC gauge configurations, and
the solid curve is a fit to the data using chiral perturbation theory. For comparison, the figure
also shows three points by the RBCK collaboration [15] using dynamical domain wall fermions
(blue), the most recent results by the QCDSF/UKQCD collaboration[16] using improved Wilson
dynamical fermions (purple), and previous LHPC calculations using SESAM configurations[17]
with dynamical Wilson quarks (green).

To address this exceedingly demanding regime of light quarkmasses and large volume the Lattice
Hadron Physics Collaboration (LHPC) has recently calculatedgA using a hybrid approach in which
they combine improved staggered sea quarks in gauge configurations generated by the MILC Col-
laboration with domain wall quarks in the initial and final states [14]. The improved staggered
quark action has the advantage that it can be used to generateconfigurations with light sea quarks
with current computers, while the domain wall quark action has the advantage of having nearly
exact chiral symmetry on the lattice. Figure5 showsgA from this and previous lattice calcula-
tions as a function of the square of the pion mass, along with afit using chiral perturbation theory.
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The final LHPC result isgA = 1.226±0.084, in excellent agreement with the experimental value
1.2695±0.0029.

Predictions of Lattice QCD

During the course of the SciDAC Program, the Lattice QCD community moved from the valida-
tion of techniques through the calculation of quantities that are well known experimentally, to the
successful prediction of quantities that had not yet been measured. Four important predictions that
were subsequently confirmed by experiment are:

• One of the major objectives of the field of Lattice QCD is to determine the decay properties
of pseudoscalar mesons with one light and one heavy quark. Strong interaction effects in
leptonic decays are characterized by decay constants, while in semileptonic decays they are
characterized by various form factors. The decay constantsand form factors forB andBs
mesons, which contain heavyb quarks, play a critical role in tests of the Standard Model
that are currently a major focus of the experimental programin high energy physics. These
quantities are very difficult to measure experimentally, soaccurate lattice calculations of
them would be of great importance. On the other hand, the decay constants and form factors
of D andDs meson, which contain heavyc quarks, are being measured to high accuracy
by the CLEO-c Collaboration and other groups. Since the lattice techniques for studying
mesons withc andb quarks are identical, these experiments provide an excellent opportunity
to validate the lattice approach being used in the study ofD andB decays.

The Fermilab Lattice and MILC Collaborations have calculated the semileptonic form fac-
tors for the decay of theD meson into aK meson and leptons [18]. Shortly after this predic-
tion was made, the Focus and Belle Collaborations confirmed it experimentally [19, 20]. The
lattice and most recernt experimental results are shown in Fig. 6. The excellent agreement
between experimental and lattice results was an important first step in the validation process.
This work was featured in Fermi News Today [21]. Preliminary results for the form factors
of theB meson are available from the HPQCD and UKQCD Collaborations[22].

• The Fermilab Lattice and MILC Collaborations performed thefirst calculation the decay
constants of theD andDs mesons that fully takes into account the effects of sea quarks.
They foundfD+ = 201±3±6±9±13 MeV, andfDs = 249±3±7±11±10 [23]. where
the uncertainties are statistical and a sequence of systematic effects. Within a few days of
this result being made public, the CLEO-c Collaboration announced its experimental de-
termination, fD+ = 223± 16+7

−9 MeV [24]. The lattice and experimental results were the
subjects of cover articles in the CERN Courier [25] and the New Scientist [26]. More
recently the BaBar Collaboration measured the decay constant for theD+

s meson finding
fDs = 279±17±6±19 MeV [27].

• A fourth prediction from lattice QCD is the mass of theBc meson. This exotic particle,
consisting of a bottom quark and a charmed anti-quark, was first observed in 1998, but its
mass was only poorly measured. The Fermilab Lattice and UKQCD Collaborations used the
Fermilab cluster and the MILC configurations to calculate theBc mass. They found a mass of
6304±20 MeV [28], a dramatic improvement in accuracy over previous latticecalculations.
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Soon after this result was made public, the CDF experiment atFermilab’s Tevatron finished
a new, precise measurement of the mass: 6287± 5 MeV, confirming the prediction from
lattice QCD [29]. The fine agreement was covered in the New Scientist (11 December 2004),
The Scotsman newspaper (11 June 2005), and a News and Views article in Nature (14 July
2005). The success of the lattice calculation was named one of the The Top Physics Stories
for 2005 by Physics News Update [30], which described it as “the best-yet prediction of
hadron masses using lattice QCD”.
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Figure 6: The semileptonic form factorf+(q2) for the decay of aD meson into aK meson, a
lepton, and a neutrino, as a function of the momentum transfer to the leptonsq2. The orange curve
is the lattice result, and the blue points are the experimental results of the Belle Collaboration.
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A Appendices

A.1 Publications Enabled by this Grant
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Moments of nucleon light cone quark distributions calculated in full lattice QCD, The LHPC
COllaboration: D. Dolgov,et al., Phys. Rev.D66, 034506 (2002) [arXiv:hep-lat/0201021].

Lattice calculation of1−+ hybrid mesons with improved Kogut-Susskind fermions, The MILC
Collaboration: C. Bernard,et al., Phys. Rev.D68, 074505 (2003) [arXiv:hep-lat/0301024].

High-Precision Lattice QCD Confronts Experiment, The Fermilab Lattice, HPQCD, MILC and
UKQCD Collaborations: C. T. H. Davies,et al., Phys. Rev. Lett.92, 022001 (2004) [arXiv:hep-
lat/0304004].

Hybrid configuration content of heavy S-wave mesons, Tommy Burch and Doug Toussaint (The
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