Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

PDF Version Also Available for Download.

Description

Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 ... continued below

Physical Description

2 p.

Creation Information

Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.); Gasnault, O. M. (Olivier M.); Maurice, S. (Sylvestre) et al. January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

Physical Description

2 p.

Source

  • "Submitted to: "32nd Lunar and planetary Science Conference, Houston, TX, March 12-16, 2001".

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-0536
  • Report No.: LA-UR-01-536
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975127
  • Archival Resource Key: ark:/67531/metadc930435

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:48 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.); Gasnault, O. M. (Olivier M.); Maurice, S. (Sylvestre) et al. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc930435/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.