Numerical Calculations Demonstrating Complete Stabilization of the Ideal Magnetohydrodynamic Resistive Wall Mode by Longitudinal Flow

PDF Version Also Available for Download.

Description

The cylindrical ideal magnetohydrodynamic (MHD) stability problem, including ow and a resistive wall, is cast in the standard mathematical form, ωA⋅x = B⋅x, without discretizing the vacuum regions surrounding the plasma. This is accomplished by means of a finite element expansion for the plasma perturbations, by coupling the plasma surface perturbations to the resistive wall using a Green's function approach, and by expanding the unknown vector, x, to include the perturbed current in the resistive wall as an additional degree of freedom. The ideal MHD resistive wall mode (RWM) can be stabilized when the plasma has a uniform equilibrium ow ... continued below

Physical Description

207Kb

Creation Information

S. Smith, S.C. Jardin, J.P. Freidberg, L. Guazzotto May 20, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The cylindrical ideal magnetohydrodynamic (MHD) stability problem, including ow and a resistive wall, is cast in the standard mathematical form, ωA⋅x = B⋅x, without discretizing the vacuum regions surrounding the plasma. This is accomplished by means of a finite element expansion for the plasma perturbations, by coupling the plasma surface perturbations to the resistive wall using a Green's function approach, and by expanding the unknown vector, x, to include the perturbed current in the resistive wall as an additional degree of freedom. The ideal MHD resistive wall mode (RWM) can be stabilized when the plasma has a uniform equilibrium ow such that the RWM frequency resonates with the plasma's Doppler-shifted sound continuum modes. The resonance induces a singularity in the parallel component of the plasma perturbations, which must be adequately resolved. Complete stabilization within the ideal MHD model (i.e. without parallel damping being added) is achieved as the grid spacing in the region of the resonance is extrapolated to 0 step size

Physical Description

207Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-4409
  • Grant Number: DE-ACO2-09CH11466
  • Office of Scientific & Technical Information Report Number: 953216
  • Archival Resource Key: ark:/67531/metadc930418

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 20, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 13, 2016, 12:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

S. Smith, S.C. Jardin, J.P. Freidberg, L. Guazzotto. Numerical Calculations Demonstrating Complete Stabilization of the Ideal Magnetohydrodynamic Resistive Wall Mode by Longitudinal Flow, report, May 20, 2009; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc930418/: accessed October 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.