Interpretation of the Finite Pressure Gradient Effects in the Reversed Shear Alfvén Eigenmode Theory

PDF Version Also Available for Download.

Description

Ideal MHD equations employed in the NOVA code are analyzed analytically and numerically in order to investigate the role of the pressure gradient on global reversed shear Alfvén eigenmodes (RSAEs) or Alfvén cascades. We confirm both numerically and analytically conclusions obtained earlier using the ideal MHD code NOVA and analytically that the plasma pressure gradient plays a key role in the existence condition and in the dispersion relation for the mode. The effect of the plasma pressure gradient is to shift the mode frequency up at the low part of the RSAE frequency chirp and downshift the mode frequency when ... continued below

Physical Description

451Kb

Creation Information

N.N. Gorelenkov, G.J. Kramer, R. Nazikian February 21, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Ideal MHD equations employed in the NOVA code are analyzed analytically and numerically in order to investigate the role of the pressure gradient on global reversed shear Alfvén eigenmodes (RSAEs) or Alfvén cascades. We confirm both numerically and analytically conclusions obtained earlier using the ideal MHD code NOVA and analytically that the plasma pressure gradient plays a key role in the existence condition and in the dispersion relation for the mode. The effect of the plasma pressure gradient is to shift the mode frequency up at the low part of the RSAE frequency chirp and downshift the mode frequency when the frequency approaches the TAE gap This finding is opposite to predictions in a recent publication , where the pressure gradient is found to be always stabilizing by means of downshifting the RSAE frequency and enhancing its in- teraction with the continuum. We resolve this discrepancy by showing that neglecting the pressure gradient effect on the plasma equilibrium (modification of the Shafranov shift and the averaged curvature) leads to conclusions at variance to the numerical and analytical results presented here. A new variational approximation of the RSAE is introduced which compares remarkably well with NOVA solutions. With this new approximation we clearly demonstrate the diagnostic potential and limitations of the RSAE frequency measurement for MHD spectroscopy.

Physical Description

451Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-4294
  • Grant Number: DE-ACO2-76CHO3073
  • DOI: 10.2172/960228 | External Link
  • Office of Scientific & Technical Information Report Number: 960228
  • Archival Resource Key: ark:/67531/metadc930415

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 21, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 13, 2016, 2:31 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

N.N. Gorelenkov, G.J. Kramer, R. Nazikian. Interpretation of the Finite Pressure Gradient Effects in the Reversed Shear Alfvén Eigenmode Theory, report, February 21, 2008; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc930415/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.