Atomistic simulations of the plasticity behavior of polycrystalline metals.

PDF Version Also Available for Download.

Description

Recent advances in computers and atomistic modeling have made the realistic simulation of materials behavior possible. Two decades ago, modeling of materials at the atomic level used simple pair potentials. These potentials did not provide an accurate description of the elastic properties of materials or of the formation of free surfaces, a phenomenon critical in the fracture process. This paper will review the evolution of the Embedded Atom Method (EAM), a modern theory of metallic cohesion that was developed to overcome the limitations of pair potentials. The EAM includes many body effects that are necessary to describe such processes as ... continued below

Physical Description

8 p.

Creation Information

Baskes, M. I. (Michael I.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent advances in computers and atomistic modeling have made the realistic simulation of materials behavior possible. Two decades ago, modeling of materials at the atomic level used simple pair potentials. These potentials did not provide an accurate description of the elastic properties of materials or of the formation of free surfaces, a phenomenon critical in the fracture process. This paper will review the evolution of the Embedded Atom Method (EAM), a modern theory of metallic cohesion that was developed to overcome the limitations of pair potentials. The EAM includes many body effects that are necessary to describe such processes as bond weakening (or strengthening) by impurities. We examine the effects of deformation on polycrystalline FCC metals. We perform simple shear molecular dynamics simulations using the EAM on nickel samples of -10000 atoms to study yield and work hardening. It is found that the deformation is always inhomogeneous when a grain boundary or free surface is present. The atomistic simulations reveal that dislocations nucleating at grain boundaries or free surfaces are critical to causing yielding in pristine material as observed in experiment. Detailed investigation shows that the grain boundaries are significantly weaker than the bulk material and yield at a lower stress. Even so, the yield stress of the polycrystalline samples with either low angle and high angle grain boundaries are found to be similar and only slightly lower than the yield stress of single crystals with the same characteristic dimensions. The local yield stress at the boundaries if found to be significantly less than the average yield stress.

Physical Description

8 p.

Source

  • Submitted to: DIS '02, Osaka, Japan, Nov. 26-28, 2002.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-5105
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976290
  • Archival Resource Key: ark:/67531/metadc930389

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 5:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Baskes, M. I. (Michael I.). Atomistic simulations of the plasticity behavior of polycrystalline metals., article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc930389/: accessed January 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.