First Observation of an Electron Beam Emitted from a Diamond Amplified cathode

PDF Version Also Available for Download.

Description

We observed, for the first time, the emission of an electron beam from a hydrogenated diamond in the emission mode on a phosphor screen. Our experimental device is based on the following concept: the primary electrons of a few keV energy generate a large number of secondary electron-hole pairs in a hydrogenated diamond, and then the secondary electrons are transmitted to the opposite face of the diamond and emitted from its negative-electron-affinity (NEA) surface. Under our present conditions, the maximum emission gain of the primary electron is about 40, and the bunch charge is 50pC/0.5mm{sup 2}. Our achievement led to ... continued below

Creation Information

Chang,X.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Rao, t.; Smedley, J. et al. May 4, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We observed, for the first time, the emission of an electron beam from a hydrogenated diamond in the emission mode on a phosphor screen. Our experimental device is based on the following concept: the primary electrons of a few keV energy generate a large number of secondary electron-hole pairs in a hydrogenated diamond, and then the secondary electrons are transmitted to the opposite face of the diamond and emitted from its negative-electron-affinity (NEA) surface. Under our present conditions, the maximum emission gain of the primary electron is about 40, and the bunch charge is 50pC/0.5mm{sup 2}. Our achievement led to new understanding of the hydrogenated surface of the diamond. We propose an electron-trapping mechanism near the hydrogenated surface. The probability of electron trapping in our tests is about 70%. The hydrogenated diamond was demonstrated to be extremely robust. After exposure to air for days, the sample exhibited no observable degradation in emission.

Source

  • Particle Accelerator Conference; Vancouver, B.C., Canada; 20090504 through 20090508

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--81805-2009-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 952534
  • Archival Resource Key: ark:/67531/metadc930384

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 4, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chang,X.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Rao, t.; Smedley, J. et al. First Observation of an Electron Beam Emitted from a Diamond Amplified cathode, article, May 4, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc930384/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.