Forward model for the superconducting imaging-surface meg system

PDF Version Also Available for Download.

Description

We have recently completed a novel whole-head MEG system based on the Superconducting Imaging-Surface (SIS) concept originally proposed by van Hulsteyn, et al.[l]. The SIS concept is generally described as a source near a superconducting surface. The source field induces Meissner currents in the superconductor equivalent to a source image 'behind' the surface. A sensor (SQUIDS in our system) placed on the source-side of the SIS will measure the superposed fields from the real and image sources. A second consequence of the Meissner effect is to shield the SQUIDS sensors near the SIS from external or background fields. The shape ... continued below

Physical Description

2 p.

Creation Information

Kraus, Robert H., Jr.; Matlachov, A. N. (Andrei N.); Espy, M. A. (Michelle A.); Maharajh, K. (Keeran) & Volegov, P. (Petr) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have recently completed a novel whole-head MEG system based on the Superconducting Imaging-Surface (SIS) concept originally proposed by van Hulsteyn, et al.[l]. The SIS concept is generally described as a source near a superconducting surface. The source field induces Meissner currents in the superconductor equivalent to a source image 'behind' the surface. A sensor (SQUIDS in our system) placed on the source-side of the SIS will measure the superposed fields from the real and image sources. A second consequence of the Meissner effect is to shield the SQUIDS sensors near the SIS from external or background fields. The shape of the SIS used in our MEG system is a hemisphere with two cut-outs at the nominal ear-locations. A brim is added around the entire periphery with a smooth 0.5 cm radius transition between brim and hemisphere. Benefits of the SIS concept over existing systems include significantly enhanced signal-to-noise as a consequence of the SIS shielding and inherently generating pseudo-first order gradient fields at the sensors. One of the most significant challenges in realizing this system has been to accurately describe how the SIS system impacts the forward physics of any source model. Two approaches have been examined. The first is a hybrid analytical and empirical model using the analytic formalism to describe the hemisphere [1] and a correction matrix derived from empirical measurements to correct for edge effects. This approach proved overly complex and difficult in practice to obtain sufficient empirical data to derive a well-conditioned correction matrix. The second approach, reported here, was to develop a boundary element model (BEM) description of the SIS using the exact as-built geometry. Each element is described by a uniform magnetization arising from a distribution of Meissner currents in the superconductor such that B{perpendicular} = 0 at the surface. B{sub i} at each element is a superposition of the source field and the fields resulting from currents in all other elements. A precision phantom was developed to test the model. Modeled and measured magnetic field distributions agreed with typically less than 1% (< 0.1% in most cases) discrepancy at all SQUID sensors for more than 60 phantom coil positions. The attached figure shows modeled and measured magnetic field distributions for 25 such phantom coils.

Physical Description

2 p.

Source

  • "Submitted to: "3rd International Syposium on Noninvasive Functional Source Imaging, NFSI 2001 September 6-9, 2001, Innsbruck, Austria".

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-1915
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975284
  • Archival Resource Key: ark:/67531/metadc930370

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 3:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kraus, Robert H., Jr.; Matlachov, A. N. (Andrei N.); Espy, M. A. (Michelle A.); Maharajh, K. (Keeran) & Volegov, P. (Petr). Forward model for the superconducting imaging-surface meg system, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc930370/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.