Radiolytic effects of plutonium.

PDF Version Also Available for Download.

Description

Plutonium isotopes, most of them a-emitters, cause radiolytic changes in the matrix, in whic h they are embedded. The internal irradiation of Pu metal or its alloys results in physical changes, largel y as a result of the formation of helium bubbles, well-known to material scientists and weapons specialists . In all other media where plutonium occurs, usually as Pu'+ in an ionic form, the results of irradiation ar e chemical in nature. Homogenous media containing Pu, are often aqueous or non-aqueous solutions o f plutonium compounds, mostly originating during processing of spent nuclear fuel or from Pu processing . ... continued below

Physical Description

[6] p.

Creation Information

Zagorski, Z. (Zbigniew); Dziewinski, J. J. (Jacek J.) & Conca, James L. January 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plutonium isotopes, most of them a-emitters, cause radiolytic changes in the matrix, in whic h they are embedded. The internal irradiation of Pu metal or its alloys results in physical changes, largel y as a result of the formation of helium bubbles, well-known to material scientists and weapons specialists . In all other media where plutonium occurs, usually as Pu'+ in an ionic form, the results of irradiation ar e chemical in nature. Homogenous media containing Pu, are often aqueous or non-aqueous solutions o f plutonium compounds, mostly originating during processing of spent nuclear fuel or from Pu processing . Heterogenous matrices containing plutonium are more complex from the point of view of radiolysis; they usually contain a variety of combinations of common materials contaminated with radionuclides . This class of radioactive materials represents a challenge for the management of plutonium waste . One has to consider a range of time scales for radiolytic effects (and consequently a several orders o f magnitude range of the cumulative dose) beginning with waste generation, through packaging, transportation, to the period of final storage . Final storage could be for thousands of years in deep geologic repositories . At every ' stage of that time scale, radiolysis proceeds continuously an d cumulative effects c an complicate operating procedures and final disposition . The results presented here have been obtained from experiments that have irradiated of model materials, which are typically the objects of contamination with plutonium . They were irradiated with linearly accelerated electrons up to very high dose rates, adjusted to simulate any contamination at any point on the time scale .

Physical Description

[6] p.

Source

  • Submitted to: Plutonium Futures - The Science 2003, A Topical Conference on Plutonium and Actinides

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-03-0580
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976530
  • Archival Resource Key: ark:/67531/metadc930308

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 4:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zagorski, Z. (Zbigniew); Dziewinski, J. J. (Jacek J.) & Conca, James L. Radiolytic effects of plutonium., article, January 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc930308/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.