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Abstract

Understanding charge transport processes at a molecular level using computational tech-
niques is currently hindered by a lack of appropriate models for incorporating anistropic
electric fields in molecular dynamics (MD) simulations. An important technological ex-
ample is ion transport through solid-electrolyte interphase (SEI) layers that form in many
common types of batteries. These layers regulate the rate at which electro-chemical reac-
tions occur, affecting power, safety, and reliability. In this work, we develop a model for
incorporating electric fields in MD using an atomistic-to-continuum framework. This frame-
work provides the mathematical and algorithmic infrastructure to couple finite element (FE)
representations of continuous data with atomic data. In this application, the electric po-
tential is represented on a FE mesh and is calculated from a Poisson equation with source
terms determined by the distribution of the atomic charges. Boundary conditions can be
imposed naturally using the FE description of the potential, which then propagates to each
atom through modified forces. The method is verified using simulations where analytical
or theoretical solutions are known. Calculations of salt water solutions in complex domains
are performed to understand how ions are attracted to charged surfaces in the presence of
electric fields and interfering media.
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Chapter 1

Introduction

The reliance of the United States economy on fossil fuels has led to significant national se-
curity concerns regarding the impact of CO2 emissions on the global climate and domestic
dependence on foreign petroleum sources. Mitigation of these threats will require a funda-
mental shift in how our society harvests, stores, and uses energy. One of the most important
technologies that will likely play a significant role in this transformation is electrical energy
storage using batteries. Key impact areas for batteries include energy storage for transporta-
tion to reduce dependence on fossil fuels and as capacitors to regulate the intermittent power
generated by renewable sources. Unfortunately, battery technology must make significant
advances in the next decade if it is contribute to the nation’s energy solutions.

Detracting from the potential of batteries to offer an energy storage solution for personal
transportation are their lower energy density, lower power output, longer recharge time, and
reduced safety as compared to conventional internal combustion engines. Several centuries
of investigation have not changed the basic operating principles of batteries. Improving their
technological basis such that they can contribute to energy solutions will require significant
enhancements to our ability to understand and engineer charge transport processes at the
nanoscale, as discussed in the DOE Basic Energy Sciences (BES) report on research needs
in electrical energy storage devices (EESDs) [4]. While many different improvements are
needed, an important area is enhanced capacity to develop computational models of battery
behavior at the molecular level.

Molecular dynamics (MD) simulations for understanding complex processes at the atomic
scale have seen a radical improvement in the past three decades. At present, however, most
MD simulations are still performed in periodic domains due to the difficulty of accurately
prescribing boundary conditions that break the spatial symmetries and enable many prob-
lems of scientific interest to be examined. An important example is the solid-electrolyte
interphase (SEI) layer, which forms on the anode in many common types of EESDs, such as
lithium-ion batteries. It is a collection of different solid phases formed on the electrode from
the solvent and solute species. The layer is both beneficial and detrimental, as it protects
the anode but its porous structure limits the rate at which ions can move from the bulk elec-
trolyte to the electrode. Understanding this layer’s dynamics, with the goal of deliberately
engineered SEI layers, is a necessary step to enable next generation battery technologies.

The BES report points to the inability to represent inhomogeneous electric fields within
MD as one of the most important barriers to MD playing a role in modeling the SEI layer.
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This statement is a direct consequence of the aforementioned difficulty in breaking spatial
symmetry in MD simulations. By examining the current methods for incorporating long-
range electric field effects in MD, the limitation can be better understood. The two most
common approaches are Ewald summations and the particle-particle/particle-mesh (PPPM)
method [6]. Both use the following decomposition of the electric potential due to point
charges:

U =
1

2

∑
α∈A

∑
β∈A
β 6=α

(
cαcβ

rαβ
−
∫ ∫

ρα(r)ρβ(r′)

|r − r′|
dr dr′

)

+
1

2

∑
α∈A

∑
β∈A

∫ ∫
ρα(r)ρβ(r′)

|r − r′|
dr dr′ − 1

2

∑
α∈A

∫ ∫
ρα(r)ρα(r′)

|r − r′|
dr dr′. (1.1)

The first term accounts for short-range interactions between particles while the remaining
terms describe the long-range effects of a smooth charge distribution, ρ. In both methods, ρ is
represented using a Gaussian distribution. Ewald sums analytically solve this equation using
the Fourier space representation of the convolution of each atom’s associated ρ. The PPPM
method instead restricts ρ to a grid and then computes its Fourier transform to determine
the total electrostatic potential. Of the two, PPPM is more widely used, particularly for
large systems [12].

Despite the differences in performance that drive the preference of one method over
the other, both require analysis in Fourier space to solve eq. (1.1), and are thus are only
applicable in periodic domains. Further, there is no mechanism within the methods to assign
the typical boundary conditions associated with continuous potential fields. To overcome
this deficiency, the present work develops a new electric field model within the atomistic-to-
continuum (AtC) framework [17, 7, 21] currently implemented in the MD code LAMMPS
(see [11] and http://lammps.sandia.gov). AtC methods involve coupling the discrete
atomic dynamics in MD to continuous processes represented by finite elements (FE). For
this application, the FE will track the long-range electric field while the MD calculates the
atomic motion. The remainder of this report describes the mathematical formulation of the
model and presents some example calculations.
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Chapter 2

Mathematical Formulation

2.1 Mathematical Framework for Multiscale Modeling

The multiscale modeling framework used in this work is based on AtC coupling as imple-
mented in the MD code LAMMPS. It is based on approximate FE projections of MD data
to restrict atomic quantities to an FE mesh and corresponding interpolation operators to
compute FE quantities on atoms. For example, the FE projection, ρ̂(x), to a continuous
density field, ρ(x) is ∫

δρ̂ ρ̂ dV =

∫
δρ̂ ρ dV, (2.1)

ρ̂(x) =
∑
I

δρ̂(x)ρ̂, (2.2)

which projects the continuous field onto a space spanned by a finite set of test functions.
Typically, FE data takes the form of nodal densities (e.g., mass density and momentum den-
sity) while the atomic data are primitive kinematic variables (e.g., mass and velocity). These
distinct quantities are related by defining atomic densities by a small but finite volume ∆V α

ρ ,
to be determined later. In this work, it is assumed that the MD and FE domains exactly
coincide on the domain Ω ⊂ R3. Because continuous integration is not well defined over the
discrete atomic locations, the projection of a continuous function onto its FE representation,∑

J∈F

∫
Ω

NINJρJ dV =

∫
Ω

NIρ(x) dV, ∀I ∈ F , (2.3)

is approximated by the sums∑
J∈F

∑
α∈A

Nα
I N

α
J ρJ∆V α =

∑
α∈A

Nα
I

mα

∆V α
ρ

∆V α, ∀I ∈ F , (2.4)

using the approximation

ρ(xα) ≡ ρα =
mα

∆V α
ρ

. (2.5)

In these equations, N indicates the finite set of FE shape functions which have finite
element indices in the set F (replacing the more general trial functions in eq. (2.1)), denoted
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by subscript Roman letters. Superscript Greek letters denote atomic indices from the set
A enumerating the atoms in the system, with Nα

I denoting the value of the shape function
associated with node I at the position of atom α, xα. The variables ρ and m denote density
and mass, respectively. By equating the two atomic volumes ∆V α

ρ = ∆V α, the fundamental
relationship between a continuous density and its associated atomic quantity is derived (with
the set notation removed from the remainder for clarity except where needed):∑

J

∑
α

Nα
I N

α
J ρJ∆V α =

∑
α

Nα
I m

α. (2.6)

A common application of eq. (2.6) would be to consider quantities only in a subset of the
atoms, A′, for example to compute the density of a single species. In this case, the governing
equation would be ∑

J

∑
α∈A

Nα
I N

α
J ρJ∆V α =

∑
α′∈A′

Nα′

I m
α′
. (2.7)

This is equivalent to to defining the mass of all atoms not in set A to be zero within the
approximate quadrature of eq. (2.6). The atom sets are different on the right- and left-hand
sides because the left-hand side represents approximate integration quadrature while the
right-hand side is a weighted average over a set of atoms. Henceforth, the notation α′ will
denote sums taken over subsets of the set of all atoms.

The present work considers all quantities to be computed in the Eulerian frame. There-
fore, both Nα

I and ∆V α will vary with time as atoms move through space. The associated
atomic volumes change with time because eq. (2.6) is a statement about shape function-
averaged mass per node, so a constant volume would not correctly assign mass to the node.
This observation implies the atomic volumes should be related to both the set of shape func-
tions and set of atoms present in the system. Therefore, consider the postulate that a nodal
atomic volume variable exits, ∆VI , and it is used to compute the atomic volume using FE
interpolation:

∆V (xα) ≡ ∆V α =
∑
I

Nα
I ∆VI . (2.8)

To be a rational choice for the atomic volume, eq. (2.4) must be an accurate approximation
of eq. (2.3). More generally, a function that satisfied the family of consistency conditions∑

α

Nα
I ∆V α =

∫
Ω

NI dV,

∑
α

Nα
I N

α
J ∆V α =

∫
Ω

NINJ dV, (2.9)

∑
α

Nα
I N

α
JN

α
K∆V α =

∫
Ω

NINJNK dV,

...

would guarantee that all integrals involving FE shape functions matched their discrete ap-
proximations. However, this is an infinite set of constraints, so instead only the m = 1
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constraint is used because it results in a well-posed system of equations for ∆VI . By substi-
tuting eq. (2.8) into the first constraint of eq. (2.9), the equation governing the nodal atomic
volumes is ∑

α

Nα
I

∑
J

Nα
J ∆VJ =

∫
Ω

NI dV. (2.10)

The mathematical structure of this formulation can be related to the standard notion of
continuum models of fluid flow by taking the time derivative of eq. (2.6). On the right-hand
side, the result is

d

dt

∑
α

Nα
I m

α =
∑
α

mα d

dt
Nα
I =

∑
α

mα∇Nα
I · vα. (2.11)

The time derivative of the left-hand side produces two terms:

d

dt

[∑
α

∑
J

Nα
I N

α
J ρJ ∆V α

]
=
∑
J

∑
α

[
(Nα

I N
α
J ∆V α)

dρJ
dt

+
d

dt
(Nα

I N
α
J ∆V α) ρJ

]
. (2.12)

For the left-hand side, the important relationship is∑
α

Nα
I N

α
J ∆V α ≈

∫
Ω

NINJ dV. (2.13)

This is not exact because only one of the constraints in eq. (2.9) can be satisfied, and it
is eq. (2.10) corresponding to the first moment rather than the second moment. If this
approximation is exact, then the term multiplying dρJ/dt is the standard FE mass matrix
while

d

dt

(∫
Ω

NINJ dV

)
= 0. (2.14)

To get eq. (2.11) into the appropriate form, consider∑
α

mα∇Nα
I · vα =

∑
α

∇Nα
I · (ραvα) ∆V α

≈
∫

Ω

∇NI · (ρv) dV

=

∫
∂Ω

NI (ρv) · n dS −
∫

Ω

NI∇ · (ρv) dV.

The accuracy of this equation is a function only of the approximate MD quadrature.

The standard, continuous time evolution equation is

dρ

dt
+∇ · (ρv) = 0, (2.15)

which has the usual FE approximation:∑
J

∫
Ω

NINJ
dρI
dt

dV =

∫
Ω

NI∇ · (ρv) dV =

∫
∂Ω

NI (ρv) · n dS −
∫

Ω

NI∇ · (ρv) dV. (2.16)

11



Hence, if the atomic quadrature is exact, then the standard FE approximation to the mass
conservation equation is obtained. The precision of the quadrature is related to the number
of atoms in each element, so as the ratio of atoms per element becomes large, the correct
continuous transport equation is recovered.

2.2 Electric Field Model

2.2.1 Long-Range Electric Field

The emphasis of this work is on the formulation of an AtC electric field in which long-range
interactions are computed on a FE mesh and communicated to the atoms, while short-
range interactions are modeled directly by Coulombic interactions to maintain high fidelity.
Each charged atom contributes to the electric potential, and because the potential is long-
range, a direct restriction of the electric potential would be prohibitively costly, just as
direct computation of the long-range Coulombic interactions is costly. Instead, the equation
governing the electric potential will be solved on the FE mesh. The continuous equation
governing the electric potential is

∇2φ = − 1

ε0
q, (2.17)

with q being the charge density and ε0 the dielectric constant. The charge density of atom
α can be written as

qα =
cα

∆V α
, (2.18)

where cα is the charge of atom α. Using the fundamental AtC projection, eq. (2.6), the
relationship between the two charge descriptions is∑

α∈A

Nα
I

∑
J

Nα
J qJ ∆V α =

∑
α∈A

Nα
I c

α. (2.19)

It is now necessary to determine what FE equations the electric potential should sat-
isfy. Standard FE practice is to multiply by the shape functions and integrate by parts, a
procedure which produces:∫

Ω

∇NI · ∇φ dV =
1

ε0

∫
Ω

NIq dV −
∫

Γ

NIE · n dS. (2.20)

Here, the electric field is given by E = −∇φ and must be prescribed on boundaries with a
free potential. If the FE electric potential is an expansion in the shape functions,

φ̂(x) =
∑
I

NI(x)φI , (2.21)

and the continuous charge density is approximated by the FE projection eq. (2.19), the FE
equation for the potential is∑

J

∫
Ω

∇NI · ∇NJφJ dV =
1

ε0

∑
J

∫
Ω

NINJqJ dV −
∫

Γ

NIE · n dS. (2.22)
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In contrast to the AtC projection, continuous integrals are retained because all quantities
involved are continuous. This difference highlights the contrast between intrinsic (atomic-
based) and extrinsic (non-atomic-based) fields.

2.2.2 Atomic Electric Field

While the equations discussed in the previous subsection describe the FE component of the
electrical interaction, capturing interactions at scales finer than the grid is important to
accurately represent the dynamics of charged particles in proximity. Tractability implies
that a finite cutoff distance is needed, as is standard in MD. Outside of this cutoff, the only
information regarding charge information between two particles is provided by the large scale
electric field. However, inside this cutoff radius the interaction is most accurately described
by the Coulombic interaction. Denote the set of atoms within the cutoff radius of atom α
as Nα, then the total electrostatic force on atom i is:

fαe =
∑
β∈Nα

h(xα,xβ)
kcαcβ

r2
αβ

r′αβ − cα∇φ̂∗(xα)− cα
∑
β∈Nα

[
1− h(xα,xβ)

]
∇φ̂β(xα), (2.23)

where r′αβ is the unit vector in the direction of rαβ = xβ − xα and φ̂∗ denotes the electric
potential induced by all atoms in the setA\Nα and the FE boundary conditions. In contrast,
φ̂β accounts only for the FE potential generated by atoms within the cutoff radius of atom
α. The force has been decomposed into a Coulombic and FE short-range force, which can
be smoothly varied between the two by adjusting the function h. Many MD potentials (e.g.,
CHARRM [10]) include such smoothing. While it will be taken to be unity throughout this
work, none of the further development depends on the functional form of h so anisotropic
and inhomogeneous smoothing of the electric field is possible within this framework. Because
the potential satisfies a linear equation, eq. (2.23) can be rewritten as

fαe =
∑
β∈Nα

h(xα,xβ)
kcαcβ

r2
αβ

r′αβ − cα∇φ̂(xα) + cα
∑
β∈Nα

h(xα,xβ)∇φ̂β(xα). (2.24)

Given the expression for the total electrostatic force acting on atom α in eq. (2.24), the
Coulombic interaction is computed from the MD while the large-scale electric field is applied
directly from the FE. It therefore remains to determine an effective manner in which to
compute the contribution of the electric field at an atom strictly from its neighbors. Directly
solving for the electric potential based on this set is a burdensome cost because it must be
repeated over every atom and scales with the cost of the FE mesh. Instead, a method using
Green’s functions computed on the FE mesh is preferable. The Green’s function associated
with the I th node satisfies the system of equations:∑

K

∫
Ω

∇NJ · ∇NKG
I
K dV =

1

ε0
δI,J . (2.25)
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with δI,J being the Kronecker delta, which in this case is unity for the Kth equation and zero
for all others. Boundary conditions are taken to be homogeneous by definition in eq. (2.25).
The factor of 1/ε0, while not necessary, is retained to facilitate later notation. The nodal
variables GI

J define the response of each mesh node, J , to an impulse at the I th node. A
solution for the total potential at every node I can be written as

φI =
∑
J

fJG
J
I −

∫
Γ

NIE · n dS, (2.26)

where

fI =
∑
J

∫
Ω

NINJqJ dV. (2.27)

Using this formulation, the potential due to only the neighbors is defined by two operations:∑
γ∈A

Nγ
I

∑
J

Nγ
J q

β
J ∆V γ = Nβ

I c
β, ∀β ∈ Nα, (2.28)

φβI =
∑
J

(∑
K

∫
Ω

NJNKq
β
K dV

)
GJ
I . (2.29)

This framework allows the potential at atom α due to its neighbors to be easily evaluated.
However, eq. (2.28) requires solution for a set of nodal variables for each atom while eq. (2.29)
necessitates evaluating integrals over the entire FE domain and storing a nodal field for every
atom. Also, a nodal field for every node is required to store all the Green’s functions. There-
fore, while this approach successfully eliminates the solution of the FE electric potential per
atom, there is still a need to introduce a series of approximations to reduce its computational
and storage expense.

The cost of this method, in terms of both CPU and memory, is associated with the global
nature of the FE quantities for both the restricted charge density and the Green’s functions.
Specifically, the projection in eq. (2.28) generates a charge density field that will in general
have non-zero nodal values for all nodes in the mesh. Similarly, evaluating the integral in
eq. (2.29) requires data at every node in the mesh because the shape functions can be non-
local and the Green’s function will be non-zero everywhere. A way to mitigate this expense
is to use “localized” projection operators that limit the effect of the atomic quantities on the
nodal variables in eq. (2.28) to a bounded domain. One means of producing such operators
is by approximating the mass matrices using row-sum lumping, changing the projection
eq. (2.6) to: ∑

α

Nα
I qI ∆V α =

∑
α

Nα
I c

α. (2.30)

If this approximation is consistently applied to the right-hand side of eq. (2.22), in conjunc-
tion with eq. (2.10), the governing equation for the FE potential becomes∑

J

∫
Ω

∇NI · ∇NJφJ dV =
1

ε0

∑
α

Nα
I c

α +

∫
Γ

NIE · n dS. (2.31)
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Algorithm 1 Determination of Green’s Function Sparsity Pattern

1: color all nodes red
2: insert node I to list SPARSITY
3: color node I black
4: list NEIGHBORS = set of all nodes sharing shape function support with node I
5: insert all nodes in NEIGHBORS in SPARSITY
6: color nodes in NEIGHBORS black
7: enqueue nodes in NEIGHBORS in queue NEXT-NODES
8: while NEXT-NODES is not empty do
9: pop NEXT-NODES to node J

10: list NEXT-NEIGHBORS = set of all red nodes sharing shape function support with
node J

11: insert all nodes in NEXT-NEIGHBORS in SPARSITY
12: color all nodes in list NEXT-NEIGHBORS black
13: if node J is within the cutoff radius of any node in NEIGHBORS then
14: enqueue all nodes in NEXT-NEIGHBORS in NEXT-NODES
15: end if
16: end while

This immediately reduces eq. (2.29) to

φβI =
∑
J

Nβ
J c

βGJ
I (2.32)

through the use of eq. (2.10). Note that without row-sum lumping, all the Green’s functions
would have to be retained due to quadrature errors in eq. (2.10).

The operation count for computing the short-range FE field using eq. (2.32) scales as
O(nαnβ) (nα is the number of atoms, nβ is the average number of neighbors per atom)
because nβ sums must be performed per atom. This is the same operation count as is needed
to evaluate the Coulombic interactions, and naturally fits into the domain decomposition
mode of parallelism. However, the factor contained in the scaling itself depends on the
number of FE nodes because each term in the sum involves a vector of data at each node. If
a large grid is used, the cost of evaluating the short-range FE electric forces will dominate
the short-range Coulombic force computation.

The situation can be remedied by storing each GI sparsely, which is reasonable because
only those atoms which are neighbors will have this short-range interaction. The nodal
truncation can be computed a priori along with the Green’s functions by using Algorithm
1 to compute the lists of retained nodes. This algorithm guarantees that all nodes with
shape functions corresponding to atom pairs that could be neighbors if one of them is in the
support of node I are included, but no others are. If the mesh size is bounded below, then
the number of nodes retained in each sparsity pattern is bounded above and independent of
the total number of nodes in a mesh. This allows the short-range interactions to be correctly
accounted for in an efficient manner.

15



2.3 Boundary Condition Models

Imposing classical boundary conditions on MD systems presents a challenge because, at the
scales of MD, boundary conditions are actually fluctuating quantities rather than fixed con-
straints. This section describes how some can be applied. The first boundary conditions
considered are Neumann conditions, which involve the normal derivatives that appear ex-
plicitly in eq. (2.17). If the system is immersed in a strong and known electric field, setting
E at the boundaries to this quantity will impose the correct conditions. It can also be based
on known currents because these are proportional to the electric field strength. If far field
data indicate there is no overall electric field or current, this quantity should be set to zero
because that is correct on average.

The next case of interest is a charged infinite surface, which will occur in an MD calcula-
tion if one or two dimensions parallel to the surface are periodic. Because an infinite surface
carries infinite charge, a potential cannot be assigned to this surface. Rather, a bulk electric
field should be applied perpendicular to the surface with strength based on the desired sur-
face charge. At the surface, the potential is set to zero so that the total electric potential is
the sum of the charge that sets up the bulk electric field with the potential induced by the
charged particles represented in the MD.

In addition to the surface charge, special considerations must be given to the periodic
boundaries. Within the current implementation the potential is not computed in Fourier
space and therefore cannot be determined to a constant. Instead, a single (arbitrary) node
must be fixed to an arbitrary value. A prerequisite for this approach is the net charge within
the simulation box is zero or the spatially varying component of the potential due to point
charges is no longer periodic. Further complications are created through the Green’s function
equation, eq. (2.25). The Green’s function of interest in this case is non-periodic and infinite
because the short-range charges should affect only interacting pairs rather than the infinite
number of interactions of an atom with all the periodic images of its neighbors. Overcoming
this challenge is possible; for example the infinite Green’s function can be approximated on
a larger mesh or the analytic Green’s function projected onto the existing basis. However,
such an effort is beyond the scope of this work. Instead the PPPM method is used to
account for the electric forces in those directions while the AtC approach only applies forces
in the non-periodic directions even though the electric potential is three-dimensional. A
small error is introduced using this approach because the vertical component will have a
slight overcorrection due to the presence of its periodic images.

A final case of interest is the inclusion of a finite, fixed potential surface. In this work, a
fixed potential surface is a surface with a given charge distribution with the potential set to
the self-induced value everywhere on the surface. A surface with a fixed charge will have a
varying potential due to the presence of external charge sources, such as point charges. In
large systems, it is reasonable to assume that an external voltage will maintain a potential
roughly constant in time, but at the small time and length scales present in MD, this is an
approximation. The surface charge would also depend on the electronic properties of the
surface. For example, the surface charge in a conductor will vary to maintain no electric field
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inside the conducting body, while other surfaces would require a more complex relationship
between surface charge and voltage. These effects are not included in the surface charge
model that follows, but are somewhat mitigated by the inclusion of short-range interactions
with the wall.

Consider a fixed charged on a finite surface specified on a set of FE faces that must not
be periodic in any direction. Because the faces are finite, a constant surface charge density
will not maintain a constant potential. The potential due to a continuous charge σ(x) on a
surface can be determined by:

V (x) =

∫
S

kσ(s)

‖x− s‖
dS. (2.33)

The FE projection for the voltage is:∑
J∈S

∫
S

NINJVJ dS =

∫
S

NIV (s) dS =

∫
S

NI

(∫
S′

kσ(s′)

‖s− s′‖
dS ′
)

dS, ∀I ∈ S, (2.34)

where S is the set of FE nodes belonging to surface S. The integral on the right-hand side
of eq. (2.34) can be evaluated using standard FE face quadrature. As an aside, if the charge
distribution is also defined by an FE expansion, eq. (2.34) becomes∑

J∈S

∫
S

NINJVJ dS =
∑
J∈S

∫
S

NI

(∫
S′

kNJσJ
‖s− s′‖

dS ′
)

dS, ∀I ∈ S. (2.35)

Equation (2.35) defines a linear relationship between the nodal potential on a surface and
its associated nodal charge. The nodal charge for a fixed potential can be determined by
solving for σJ after setting each nodal charge to be fixed.

Within the multiscale framework for the electric potential, the surface charge will play
a similar role to the atomic charges in that they both induce a long-range potential and
provide short-range interactions. To consider these types of interactions, we further expand
eq. (2.24) by accounting for the surface charge in the electric potential

fαe =
∑
β∈Nα

h(xα,xβ)
kcαcβ

r2
αβ

r′αβ + cα
∑
I

∫
S

T
B(xα,rc)

hs(xα, s)
kNIσI
‖xα − s‖2

r′αs dS

− cα∇φα + +cα
∑
β∈Nα

h(xα,xβ)∇φ̂β(xα) + cα
∫
S

T
B(xα,rc)

hs(xα, s)∇φ̂αs dS. (2.36)

The first integral accounts for the exact short-range force exerted by the surface charge
while the second integral is a correction removing the effect of the surface charge through
the FE potential on atom α. Both integrals can be evaluated directly using FE quadrature,
although other quadrature schemes (e.g., based on atoms contained in those faces) would
be possible. The potential induced by the surface charge can be determined by computing
Green’s functions for each of the quadrature points by first solving eq. (2.35) for the induced
surface potential of a unit charge and then solving the the electric potential equation treating
the surface as a fixed potential boundary.
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In general, these Green’s function are highly non-local because charge at any point on a
surface induces a non-zero potential everywhere on the surface, as shown in eq. (2.35). How-
ever, the resulting short-range interactions can still be localized by truncating the Green’s
functions to only those nodes within a cutoff radius of the surface. As in the case with the
potential induced by charged particles, the Green’s functions can be computed and stored
during a pre-computation phase. This method is a low-storage, low-cost approach that
accounts for accurate short- and long-range interactions between charged MD atoms and
prescribed surface data. An important point to note is that for a given quadrature scheme
to evaluate the surface integrals in eq. (2.36), each quadrature point will require its own
Green’s function.

2.4 Implementation Details

The methods described above were implemented in LAMMPS within an existing AtC frame-
work. This framework generates a FE overlaying a region of atoms and computes piecewise
linear shape function values and derivatives at FE quadrature points and atomic locations.
A pre-processing step first computes the nodal neighbor list for each node based on the force
cutoff radius according to Algorithm 1. Then the stiffness matrix is set up for the electric
potential, eq. (2.31), and used to compute each Green’s function according to eq. (2.25).
Green’s functions are then truncated and stored in sparse vectors based on the nodal neigh-
bor lists. At the same time, fixed potential boundary values are determined by eq. (2.34).
Then the Green’s function for each surface quadrature point used to evaluate eq. (2.34) is
calculated by solving eq. (2.31).

The bulk of the work of this method occurs immediately after the LAMMPS force cal-
culation step, which is between the two steps in the Verlet integration scheme. At each
time step the shape function matrices used in the projection operation (eq. (2.6)) must be
updated to the new positions of the atoms. After this is done, the matrices in the FE atomic
volume equation are known.

After the shape function-related quantities are updated, the charges can be restricted
using eq. (2.19) with row-sum lumping to form the right-hand side for the FE electric poten-
tial, eq. (2.31), enabling its calculation using the pre-computed stiffness matrix. Neumann
conditions are applied by adjusting the right-hand side during the solve while Dirichlet con-
ditions are satisfied by a penalty method. This method weights the diagonal entry of all fixed
nodes with a value 104 greater relative to the maximum diagonal value in the left-hand-side
matrix. Correspondingly, the right-hand side is modified by adding the same penalty factor
multiplying the desired potential value.

LAMMPS adds in the Coulombic interaction before the present method is executed, so
only the last two terms in eq. (2.24) need to be accounted for. The first, accounting for the
total FE electric field, is added to all atoms. Afterwards, the truncated FE potential asso-
ciated with each atom is computed using the Green’s functions multiplied by the restricted
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atomic charges. This preprocessing step allows the neighbor FE potentials for each atom to
be quickly calculated by summing over the FE potential contribution of all its neighbors.
The potential is then corrected to result in the appropriate electric force at each atom using
eq. (2.24).

Charged surfaces are implemented in an approximate manner. In a pre-processing step,
consistent with a form of row-sum lumping approximation of eq. (2.34), the potential is
determined from a fixed charge by

VI =
∑
W

kσ(w)

|xI − w|
W, (2.37)

where W denotes the Gauss quadrature points and weights on the face. This approach
ensures the denominator is always non-zero. To evaluate the short-range interactions, the
nodes are used as effective charge locations with charge set to the shape-function weighted
integral of the surface charge,

σI =

∫
Γ

NIσ(x) dS, (2.38)

with the integral evaluated using the same Gaussian quadrature as eq. (2.37).

When computing the short-range surface interactions and corrections in eq. (2.36) only
nodes within the cutoff radius of each atom are considered, and then their Green’s functions
are used to remove the FE potential. As a simplifying approximation, face-specific Green’s
functions are not computed for the charge at each quadrature point that contributes to
the charge at node I in eq. (2.38). Instead, only their contributions to the potential at
node I are considered, which allows the same Green’s functions as those used in eq. (2.32)
to be reused. The net effect of all these approximations are that low-order integration is
used to evaluate the first integral in eq. (2.36) while the correction from the second integral
does not take into account all the long-range impact of local charge on the fixed potential
boundary condition applied in eq. (2.31). Improvements can be made by improving the
order of integration over the surface within the cutoff radius and more accurately estimating
the impact of charge associated with quadrature points on the electric potential. A final
improvement in performance can be realized by maintaining neighbor lists at each surface
quadrature point to avoid the search over all atoms to determine those near a wall (walls
are currently implemented in LAMMPS with this more expensive approach as well). These
improvements in the implementation of charged surfaces, as well as more general models
for other types of surfaces and periodic boundary corrections for eq. (2.24) are deferred for
future work.
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Chapter 3

Computational Results

3.1 Basic Verification Test Case

To verify the basic correctness and implementation of the method, a simple stack of atoms
was set up with periodic conditions along the span (y, z). Periodic conditions on the atomic
forces were also used along the length of the stack (x) to maintain the equilibrium structure.
A FCC lattice structure with spacing 4.08 Å, resulting in 144 atoms, was used to develop a
test case amenable to analytical solution. Around this lattice a FE mesh was constructed
to represent the continuous charge distributions and electric field. While the elements have
non-zero volume, periodicity in the y and z directions effectively makes the elements one
dimensional with length 2.04 Å. However the FE mesh is not periodic in the x direction so
fixed potential and electric field boundary conditions can be applied. The overall structure
is shown in Fig. 3.1(a).

The electric field in this case was driven by both boundary conditions and internal charges.
Each atom was given a unit charge (equivalent of a proton) such that the system’s charge
density was uniform at 5.89× 10−2 unit charges per Å3. The FE potential was fixed to zero
at the left end. At the right end, either an insulating or fixed electric field condition was
used. The known boundary conditions and charge densities allow the analytic solution to
Poisson’s equation to be determined. As shown in Fig. 3.1, in both cases the analytic solution
is recovered by the method. This case tests the Poisson solver, projection operations, and
computation of the atomic volume. The results verify their implementation and demonstrate
that the overall mathematical formulation of the problem is reasonable given the behavior
of the FE system.

3.2 Comparison with Existing Methods: PPPM and

Ewald Sums

Providing a quantitative comparison of the present method with existing approaches for
including long-range electrostatic forces in MD is an important aspect of verifying the tech-
nique. These are primarily PPPM and Ewald sums as described in Chapter 1. Because they
are only appropriate for periodic systems, a fully periodic FCC lattice system is created with
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Figure 3.1. Basic verification test case. Figure 3.1(a)
shows the problem set up while 3.1(b) presents the results
for different boundary conditions.

dimensions 65.28×12.24×12.24 Å and lattice spacing of 4.08 Å, corresponding to 576 atoms.
The atoms are uncharged except for a group with a positive unit charge and a group with a
negative unit charge, as shown in Fig. 3.2 (note this is the finest FE mesh). Initial computa-
tions were performed with the short-range Coulombic force disabled so that the only forces
acting on the atoms are the long-range forces generated by the method. As shown in Table
3.1, the method produces forces similar to the other methods. In each case the force acting
on the negatively charged atoms is presented because the net force was zero for all methods.
To see how this is related to the FE fields, Fig. 3.3 shows the FE charge density and electric
potential variables. The charge density is simply the approximate projection of the atomic
state and enters into the right-hand side of the equation governing the electric potential. On
the coarsest mesh, inadequate resolution exists to accurately solve the gradients needed in
this equation, resulting in error in the solution.

This test demonstrates the correctness of the theory and implementation regarding the
prolongation of the long-range force from the FE to the atoms, including the use of FE
shape functions to take derivatives of the electric potential. It further demonstrates that
the method is comparably accurate to existing methods, even though the finest FE grid
had only 256 elements while the automatically generated PPPM method required a grid of
320 × 90 × 90 Fourier collocation points to achieve an error of 10−4. This is the only case
considered in this work in which a fully periodic system is considered because dynamics were
not evaluated, and therefore the short-range FE correction was not needed (recall the current
correction scheme is inappropriate in periodic directions). However, to use the FE method
the node corresponding to x = y = z = 0 was fixed to have zero potential so the Poisson
equation would be well posed. These modifications enabled a quantitative comparison with
existing methods that use periodic boundaries.
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Figure 3.2. Schematic of the PPPM and Ewald compari-
son case with the present method. Red atoms are positively
charged, green atoms are negatively charged, and blue atoms
are neutral.

3.3 Comparison with Full Anisotropic Solution

There is one other technique to incorporate long-range electrical interactions between charged
particles in MD: “brute force” calculation of the electric field using a finite MD simulation
with a Coulombic cutoff distance greater than the maximum possible atomic separation.
Such an approach is impractical for most simulations because the cost of building the neigh-
bor lists and computing the interatomic electrical interactions is prohibitive. It is also inap-
propriate for periodic systems because an infinite cutoff radius would be required.

The model system built to examine this case consists of an FCC gold lattice with spacing
4.08 Å over a horizontal span of 22.44×22.44 Å2. The lattice is not periodic in any direction,

Table 3.1. Comparison of the force computed by the long-
range electric field. The present method, with entries denoted
by the mesh size, is shown along with existing approaches.

Force
(

g ps

Å
2

mol

)
Method/Mesh

8.49533× 106 PPPM
8.49543× 106 Ewald sums
4.71971× 106 8× 1× 1 elements
8.49547× 106 16× 1× 1 elements
8.49547× 106 32× 1× 1 elements
8.49547× 106 32× 2× 2 elements
8.49547× 106 32× 4× 4 elements
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(a) Finite Element Charge Density
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Figure 3.3. Finite element fields from the finest mesh used
to compare against the PPPM method and Ewald Sums. Fig-
ure 3.3(a) shows charge density and 3.3(b) presents the elec-
tric potential using this charge density as a source.

so three layers of gold atoms at the bottom and along the sides are held fixed to stabilize the
lattice, which has a depth of 12.24 Å. Because the spatial symmetry is broken, the resulting
lattice must be minimized to determine its equilibrium configuration. Liquid argon is then
added on top of this structure to a height of 22.44 Å , with the total dimensions of the box
selected as the maximum size such that the neighbor lists could fit in the available memory
and still be long enough for atoms at opposite ends of the box to be neighbors. The liquid
argon was allowed to equilibrate for 50 ps with a time step of 0.5 fs using the NVT ensemble.
A schematic of the system, including the FE mesh, is shown after the equilibration step
in Fig. 3.4. Upon creation, certain argon atoms were randomly chosen to have a positive
unit charge so that during equilibration they tend to separate. These atoms are bounded by
applying 9-3 Leonard-Jones walls along the five sides without gold to serve as a wall. All
inter-atomic forces were modeled using Leonard-Jones interactions. Gold-gold interactions
use ε = 0.724 eV and σ = 2.598 Å, while the argon-argon model has ε = 0.010 eV and
σ = 3.405 Å. A uniform cutoff radius of 13.0 Å localizes the interactions, and cross-species
interactions use parameters mixed with the arithmetic rule.

After the system has come to a statistical steady state, the top layer of gold atoms is
negatively charged with an amount so that it can be effectively screened by the ions. This
case loosely corresponds to the electric double layer commonly observed on charged surfaces
in aqueous solutions. This configuration is run to a steady state using only Coulombic
interactions with a long cutoff distance of 40 Å as well as the proposed method using a
much more modest distance of 13 Å. Exactly resolving all long Coulombic interactions was
the limiting factor in choosing this geometry. The FE mesh was created over the liquid
using 43 uniform elements of size approximately 175 Å3. When using the AtC method the
gold atom charge was removed in favor of a fixed-charge boundary and its corresponding
spatially varying potential. Zero electric field (Neumann) boundary conditions were used on
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Figure 3.4. Schematic of the fully anisotropic configura-
tion. Gold atoms are yellow, neutral argon atoms are light
blue, and positively charged argon atoms are dark blue. Par-
ticles are kept in the box using fictitious 9-3 Leonard-Jones
walls at each unbounded side of the mesh, which is colored
using the electric potential.

all other sides. This case illustrates the difficulty in exactly translating continuous boundary
conditions to an atomistic setting. An insulating condition is only appropriate in the limit of
an infinitely small screening layer such that the electric field is zero outside of the domain of
interest. This limit is violated even in the steady state of this solution, and is clearly incorrect
during the transient. Further, the charged surface is treated as a fixed potential surface by
the FE electric potential, when in reality the potential varies based on the distribution of
the atoms. In a true conductor, for example, the potential and surface charge would change
to make the electric field in the conductor zero. Improved boundary conditions to better
account for these physics are beyond the scope of this work.

Despite the inconsistency in between the continuous boundary conditions and the full
MD solution can be compared against the MD solution using the long-range FE electric
field. An electric potential is computed directly based on the positions and charges of each
atom for the MD. Figure 3.5 compares this exact electric potential with that of the electric
potential AtC from the AtC calculation at the steady state along a vertical slice of the
domain(the mean value of each has been removed). Both the structure and magnitude of
the AtC potential compares well with that from the MD simulation. The cause of this good
agreement can be ascertained by examining the end states from each of the two methods.
In the MD case, all 27 charged atoms lie in an immobile layer near the wall while in the
AtC method results in 25 atoms in this layer (based on the particles’ trajectories, one of
the free atoms is partially screened). By congregating near the wall, these atoms screen the
electric field so it drastically reduces in magnitude away from the wall. The dynamics of
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these atoms indicate they are highly attracted to the charged wall as they experience only
a vibrational motion after their adsorption. Therefore, despite the approximate nature of
the insulating FE boundary conditions and the low-order quadrature used to implement the
charged surface, good agreement is obtained with the exact solution when using this method
in both quantitative and qualitative senses.

!!" !# !$ !% !& " & % $ # !"

"

'

!"

!'

&"

()*+,+)-.+-./.01-2*,3)4*5

()
*+
,+)
-.
+-
.6
.01
-2
*,
3)
4
*5

!!"

!#

!$

!%

!&

"

&

(a) Exact Electric Potential

!!" !# !$ !% !& " & % $ # !"

"

'

!"

!'

&"

()*+,+)-.+-./.01-2*,3)4*5

()
*+
,+)
-.
+-
.6
.01
-2
*,
3)
4
*5

!!%

!!&

!!"

!#

!$

!%

!&

"

(b) Finite Element Electric Potential

Figure 3.5. Contour plot of the electric potential computed
directly from summations over charged particles (3.5(a)) and
from the AtC method (3.5(b)). The X axis is parallel to the
wall while the Z axis is perpendicular. Units are Volts. The
mean value of the potential was removed in both cases.

3.4 Electrolyte Flow in a Silicon Nano-Channel

In this case, flow in a nanofluidic device is considered. A full analysis of this configuration
is beyond the scope of this work, but the case illustrates how to perform these types of
technologically relevant simulations. Silicon crystals form walls at the top and bottom of a
region of salt water, which is free to flow in the wall-parallel directions. Periodic conditions
are used to allow this flow while the channel walls break the symmetry. Figure 3.7 illustrates
the computational geometry. The silicon planes are initialized in a similar manner to the gold
in section 3.3 except for the periodic boundaries in the transverse direction. The silicon is
arranged in a diamond lattice with the 111 face towards the water, and then the arrangement
is adjusted to minimize the potential energy to account for the exposed face. A box of water
containing sodium and and chlorine ions is initialized for 1 ns in a fixed region using the
NVT ensemble and 9-3 Leonard-Jones walls to contain the fluid in the wall-normal directions.
The water is modeled using the TIP3 [8] set of Leonard-Jones coefficients and charges (see
Appendix A for more details). After equilibration, the water is inserted between the silicon
planes and allowed to readjust for 1 ns. During this phase, the water was integrated using the
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(a) Final State Using long-range Interactions (b) Final State Using AtC Method

Figure 3.6. Comparison of the final MD state from the
direct calculation (3.6(a)) and the AtC method (3.6(b)). See
Fig. 3.4 for the color legend.

NVE ensemble while the silicon followed the NVT ensemble so it could thermally regulate
the salt water.

After the entire system comes into equilibrium, electric fields of strength −10−5 V/Å
were applied in the x (wall-parallel) and z (wall-normal) directions. With these fields in
place, ions are forced to flow along the channel in opposite directions as well as aggregate
to opposite sides of the channel, resulting in shear flow in the channel. The wall-normal
component of the electric field is applied to the atoms using the AtC method while the
PPPM approach provides the correct long-range electric forces in the periodic directions.
This case was originally considered in [13] using a different methodology to account for the
ionic electric field by applying a wall-normal correction to the Ewald summations used to
compute the long-range electrostatic interactions in the periodic directions [18]. An electric
double layer forms on each surface, which screens the interior ions from the component
of the electric field perpendicular to the wall. Hence, the flow is slower near the channel
center as it is primarily driven by the ions in the double layers near the walls. This case
demonstrates the steps that must be taken to perform these simulations by incrementally
building and equilibrating the various components, such as silicon and water, followed by
applying separate models for the isotropic and anisotropic components of the electric field.

3.5 Nanotube-Layered Electrode

The final MD simulation performed consists of a carpet of carbon nanotubes (CNTs) on a
gold electrode. Each tube is anchored to the gold and forms a pore through which ions and
water can reach the surface. While much simplified, this geometry serves a surrogate for the
types of physics which will be present in the SEI layer. Each CNT has a chirality of (9,0) and
length of approximately 20 Å. The transverse dimensions of 41× 53.27 Å2 were chosen such
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Figure 3.7. Schematic of the silicon nanochannel simula-
tion. Water is modeled using hydrogen atoms (red) bonded
to oxygen atoms (blue). Other atoms are sodium ions (or-
ange), chlorine ions (light blue), and silicon (grey). The FE
mesh is overlaid and colored by the electric potential.

that an integer number of tubes would fit along the wall. Doing so induced a small amount of
stress in the gold, which was realized during the minimization phase. The water, containing
potassium and chorine ions, was equilibrated separately using the same procedure as in the
previous section. To account for the infinite charge on the electrode’s surface, an electric
field of −10−5 V/Å was applied in the normal direction. Periodic boundary conditions were
used in the transverse direction and PPPM method applied the long-range electric forces in
these directions while the AtC method computed the wall-normal forces. A schematic of the
setup is shown in Fig. 3.8.

The analogous dynamics to the SEI layer are the transport of aqueous species through the
CNTs to the gold surface. A closer view of this process is provided in Fig. 3.9. Water is able
to fill the tubes, but does so in chains similar to previously reported results from isotropic
MD simulations [20]. Some potassium ions are able to penetrate through the CNTs, although
the water interferes with their transport to the wall. Several ions are observed just above
the CNTs that cannot propagate downward due to this effect. In the SEI layer the pores
are sufficiently small that the solvent cannot penetrate through it, eliminating one source of
resistance to ion transport. This simulation illustrates that the method is appropriate for
the general class of dynamics in the SEI layer in terms of applying the necessary anisotropic
electric field in a system with transport through porous media.
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Figure 3.8. Schematic of the saltwater, electrode, and
CNT simulation. Water is modeled using hydrogen atoms
(red) bonded to oxygen atoms (blue). Other atoms are potas-
sium ions (purple), chlorine ions (green), carbon (orange),
and gold (yellow). The FE mesh is overlaid and colored by
the electric potential.

Figure 3.9. A close view of ions and water filling the CNTs.
See Fig 3.8 for the color legend.
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Chapter 4

Conclusions and Future Work

This work describes a method to apply consistent anisotropic electric fields, including pre-
scribed boundary conditions, to molecular dynamics simulations. By using AtC coupling,
the electric potential can be solved on a FE mesh using source terms arising from the atom-
istic charge distribution. The approach is a significant improvement over current schemes
for incorporating long-range electrical interactions, which are restricted to periodic domains.
By breaking this symmetry, the AtC electric field enables simulations of more technologically
relevant configurations with applied electric fields or potential surfaces.

For the purposes of this effort, the target application are batteries, specifically, under-
standing the SEI layer in common battery types. This layer plays a strong role in determining
battery performance and safety, but is difficult to model with current approaches because
of the anisotropy induced by the electrode. However, the electric field must be incorporated
to simulate charge transport through the SEI layer. Full simulation of the layer will also
require several additional modeling advances.

The first additional set of models that needs to be developed for SEI layer simulation
are descriptions for the chemical reactions that occur at the anode. Two primary types of
reaction occur. As the SEI layer forms, ions react at the electrode with the electrolyte to form
the variety of solid phases that comprise the SEI layer. After its formation, charge transport
reactions take place through the layer between ions and the electrode. Adding chemistry
models that account for these reactions is an important step. MD offers the opportunity to
model binary reactions if the activation energy is known. Because MD explicitly represents all
the atomic interactions, interacting pairs of reactants can be identified. Sub- and super-MD
scale information is necessary to estimate the probability of a reaction occurring, thereby
completing the reaction model. Sub-MD scale information can be determined by theory,
experiment, or quantum calculations, and accounts for the impact the collision angle and
quantum state have on the probability of a reaction. Super-MD scale data, such as electric
field strength, also can alter this probability and can be explicitly modeled within the AtC
framework. Implementing such a model will further enhance the ability of MD to represent
the SEI layer.

The second model required for full SEI layer models is to incorporate the far field state
into the model of the interphase layer. AtC coupling provides a reasonable framework in
which to realize this kind of model. The most significant difference between it and previous
AtC efforts is that transport is now mediated through atomic motion so new methods must
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be developed that can add and remove atoms in accordance with the bulk concentration
and velocities. New approaches to managing MD atomic data structures will be required to
correctly account for atomic transport in this approach. This is beneficial because solid-fluid
interfaces could be directly simulated in MD to accurately represent behavior within a larger
device.

While the target application for the method is the SEI layer, its development was per-
formed in a general manner to facilitate future investigations of other types of physics. A
logical application would be the electric double layer that forms out of an ionic solution on
top of charged or polarizable surfaces. This phenomenon is found in many situations, in-
cluding EESDs and biological flows. Improved understanding of its performance would have
significant technological applications in these areas. Additional areas of interest are flows in
porous media where ions are driven by electric fields. A technology that could benefit from a
model of this configuration is desalination where nano-structured devices can filter out salt.
Beyond these examples, many instances of nano-scale physics influenced by electric fields and
charged surfaces have scientific or technological interest, including nano-electromechanical
systems (NEMS) and fuel cells. This method provides the ability to break the spatial symme-
try in the current simulation techniques and to expand the scope of scientific investigations
and engineering applications at the nanoscale.
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Appendix A

Interatomic Potentials

Tables A.1 and A.2 give the potential type, coefficients, and source for each pair of interac-
tions considered in the simulations. All short-range charged interactions were modeled using
Coulombic interactions with a sharp cutoff at 10 Å. References refer to relevant simulations
that used these parameters in similar physics to their uses here, except for the Stillinger-
Weber (SW), embedded atom method (EAM), and AIREBO potentials in which references
are provided to a presentation describing their source. Parameters for Leonard-Jones (LJ)
interactions are the energy depth of the well ε, the length scale σ, and the cutoff radius rc.
For the Morse potential the parameters are the energy D0, inverse length scale α, equilib-
rium distance r0, and cutoff radius r0. The units used are Angstroms for length and and
electron Volts for energy. For the more complex potentials, references are given to their
parameter sets used in this application. Note that hydrogen atoms only interact with other
atoms electrically and had no other interatomic potential. The only exception are the hy-
drogens in nanotubes, which interacted with carbon atoms in the nanotubes, as indicated in
the C/H − C/H entry in Table A.1. When multiple references are provided, it implies the
Leonard-Jones parameters were mixed using the arithmetic rule. Finally, differences between
interactions common to both types of simulations were chosen to match [13] in the case of
the silicon nano-channel.
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Table A.1. Interaction potential, potential coefficients, and
reference for pairwise interactions in gold simulations.

Atom 1 Atom 2 Potential Coefficients Source

O O LJ ε = 0.006596, σ = 3.1507, rc = 10 [8]
O K LJ ε = 0.005348, σ = 3.24085, rc = 10 [8, 2]
O Cl LJ ε = 0.005348, σ = 3.77535, rc = 10 [8, 2]
O C LJ ε = 0.004475, σ = 3.35035, rc = 10 [8, 14]
O Au Morse D0 = 0.0668, α = 1.3, r0 = 3.7, rc = 9 [9]
K K LJ ε = 0.004336, σ = 3.331, rc = 10 [2]
K Cl LJ ε = 0.004336, σ = 3.8655, rc = 10 [2]
K C LJ ε = 0.003629, σ = 3.4405, rc = 10 [2, 14]
K Au LJ ε = 0.0056043, σ = 2.9645, rc = 10 [2, 21]
Cl Cl LJ ε = 0.004336, σ = 4.4, rc = 10 [2]
Cl C LJ ε = 0.003629, σ = 3.975, rc = 10 [2, 14]
Cl Au LJ ε = 0.056043, σ = 3.499, rc = 10 [2, 21]
C C AIREBO see [16] [1]
C Au LJ ε = 0.01273, σ = 2.9943, rc = 10 [19]

Au Au EAM see [5] [3]

Table A.2. Interaction potential, potential coefficients, and
reference for pairwise interactions in silicon simulations.

Atom 1 Atom 2 Potential Coefficients Source

O O LJ ε = 0.006740, σ = 3.1650, rc = 10 [13]
O Na LJ ε = 0.005348, σ = 3.24085, rc = 10 [13]
O Cl LJ ε = 0.005348, σ = 3.77535, rc = 10 [13]
O Si Morse D0 = 0.0668, α = 1.3, r0 = 3.7, rc = 9 [13]
K K LJ ε = 0.004336, σ = 3.331, rc = 10 [13]
K Cl LJ ε = 0.004336, σ = 3.8655, rc = 10 [13]
Na Na LJ ε = 0.004336, σ = 3.331, rc = 10 [13]
Na Cl LJ ε = 0.004336, σ = 3.8655, rc = 10 [13]
Na Si LJ ε = 0.0056043, σ = 2.9645, rc = 10 [13]
Cl Cl LJ ε = 0.004336, σ = 4.4, rc = 10 [13]
Cl Si LJ ε = 0.056043, σ = 3.499, rc = 10 [13]
Si Si SW see [15] [15]
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