MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT

Creator

  • Author: Zamecnik, J.
    Creator Type: Personal
  • Author: Choi, A.
    Creator Type: Personal

Contributor

  • Sponsor: United States. Department of Energy.
    Contributor Type: Organization

Publisher

  • Name: Savannah River Site (S.C.)
    Place of Publication: South Carolina
    Additional Info: SRS

Date

  • Creation: 2009-03-25

Language

  • English

Description

  • Content Description: The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC cycle. The goal of this task was to study what adverse impact the zero-mercury-removal scenario would have on the DWPF melter off-gas system operation. It is stressed again that this study was intended to be scoping in nature, so the results presented in this report are preliminary. Any further substantiation of these results for actual implementation into the DWPF flowsheet would require an in-depth modeling study of all three reaction zones, including the aqueous-phase reactions in the quencher, OGCT, Steam Atomized Scrubber (SAS), and off-gas condenser with recirculated condensate, and the proof-of-principle experiments.

Subject

  • Keyword: Exhaust Gases
  • Keyword: Radioactive Wastes
  • STI Subject Categories: 12 Management Of Radioactive Wastes, And Non-Radioactive Wastes From Nuclear Facilities
  • Keyword: Radioactive Waste Processing
  • Keyword: Off-Gas Systems
  • Keyword: Mathematical Models
  • Keyword: Mercury
  • Keyword: Oxidation
  • Keyword: Flowsheets
  • Keyword: Mercury Chlorides
  • STI Subject Categories: 54 Environmental Sciences
  • Keyword: Environmental Impacts
  • Keyword: Concentration Ratio
  • Keyword: Ceramic Melters

Collection

  • Name: Office of Scientific & Technical Information Technical Reports
    Code: OSTI

Institution

  • Name: UNT Libraries Government Documents Department
    Code: UNTGD

Resource Type

  • Report

Format

  • Text

Identifier

  • Report No.: SRNL-STI-2009-00149
  • Grant Number: DE-AC09-08SR22470
  • DOI: 10.2172/958062
  • Office of Scientific & Technical Information Report Number: 958062
  • Archival Resource Key: ark:/67531/metadc930072

Note

  • Display Note: available