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Mimetic finite difference method for the Stokes 
problem on polygonal meshes 

1. Beirao da Veigat V. Gyrya* K Lipnikovt G. Manzini§ 

December 11,2008 

Abstract 

Various approaches to extend the finite element methods to non-traditional elements 
pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis 

functions for such elements is a challenging task and may require extensive geometry anal
ysis. The mimetic finite difference (MFD) method has many similarities with low-order 
finite element methods. Both methods try to preserve fundamental properties of physical 
and mathematical models. The essential difference is that the MFD method uses only the 
surface representation of discrete unknowns to build stiffness and mass matrices. Since 
no extension inside the mesh element is required, practical implementation of the MFD 
method is simple for polygonal meshes that may include degenerate and non-convex el
ements. In this article, we develop a MFD method for the Stokes problem on arbitrary 
polygonal meshes. The method is constructed for tensor coefficients, which will allow to 
apply it to the linear elasticity problem. The numerical experiments show the second-order 
convergence for the velocity variable and the first-order for the pressure. 

Introduction 

Stokes flow is fluid flow where advective inertial forces are negligibly small compared to viscous 
forces. This is a typical situation on a microscale or when the fluid velocity is very small. Stokes 
flow is a good and important approximation for a number of physical problems such as sedirnen

modeling of bic)-suspensions, construction of efficient fibrous filters and development of 
energy efficient micro-fluidic devices mixers). Efficient numerical solution of Stokes flow 
requires unstructured meshes adapted to geometry and solution as well as accurate discretization 
methods capable of treating such meshes. We a new mimetic finite difference 
method that remains accurate on general polygonal meshes that may include non-convex and 
degenerate elements. 

General polygonal and polyhedral meshes are often used in complex simulations (see e.g. 
In adaptive solution of PDEs on quadrilateral and hexahedral meshes, local refinement 

of the mesh creates degenerate elements that have 1800 angles. The termination by thinning 
or tapering out of a geological is modeled with degenerate hexahedra that have a few 
vertices with the same coordinates. Lagrangian meshes may result in non-convex elements. The 
MFD method provides accurate discretization of PDEs on meshes with all types of degenerate 
elements. 
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The MFD methods [28, 10, 12, 11,8] have many similarities with finite element (FE) methods. 
Both methods try to preserve fundamental properties of physical and mathematical models such 
as conservation laws, solution symmetry and positivity, and the fundamental identitie.."l and 
theorems of vector and tensor calculus. Various approaches to extend the FE methods to non
traditional clements (pyramids, polyhedra, etc) have been developed over the last decade (see, 
e.g. [20, 24, 30, 31]). Building of basis functions for such elements is a challenging task and 

extensive geometry analysis. For instance, an auxiliary simplicial oartition is used 
The MFD methods combine power of FE methods with 

and polyhedral me.."lhes. Contrary to the FE methods, the MFD methods use 
surface representation of discrete unknowns to build stiffness and mass matrices. Since no 

extension inside the mesh element is practical implementation of the MFD methods is 
simple for polygonal and polyhedral meshes. 

The MFD methods have been successfully employed for solving diffusion [8, 11, ,convection
diffusion [Manzini], electromagnetics [22] and elasticity [2] problems and for modeling fluid flows 
[1, 13, 26]. The original MFD methods were the low-order methods. Miscellaneous approache.."l 
were developed to build higher-order methods [27,5,21,6]. In this article, we build a new MFD 
method for the Stokes problem on polygonal meshes. Derivation of the new method is based 
on the methodology proposed originally in [12] for diffusion problems. The formulation of the 
Stokes problem involves a tensor coefficient so that the developed method may be also 
used to solve a linear elasticity problem in the displacement formulation. Note that a mixed 
formulation of the elasticity problem is used in .. 

The developed MFD method is second-order accurate for the fluid velOCIty 
accurate for the pressure. In fact, 

Detailed analysis of this family will the topic for future research. 


A posteriori error estimates is an important part in development of MFD methods. A local 
error estimator for the diffusion problem is presented, analyzed and tested in [3, 4], while in [14] 
a post-processing methodology is introduced. Finally, we mention a few relevant finite volume 
discretization methods on polygonal and polyhedral meshes (see [17, 19] and references there in). 
Like the MFD method, these methods are build to preserve important properties of continuum 
equations. 

The paper outline is as follows. In Section 2, we derive the variational form of the Stokes 
In Section 3, we derive the new MFD method. In Section 4, we the stability 

of the discretization. In Section 5, we illustrate the DfoDosed method with three numerical 

Variational formulation for the Stokes equation 

Let fl be a polygonal domain with the Lipschitz continuous boundary. Let us consider an 
incompressible Stokes equation 

-2div(vD(u)) F - \7p 
in fl, (1 ){ div(u) = a 

where u is the fluid velocity, p is the pressure, F is a given external force, v is the fourth-order 
definite tensor, 

Vklnm Vlknm = Vnrnkl = Vmnkl, (2) 

and D(u) is the symmetrized gradient, 

2D(u) = \7u + (Vuf. 

2 
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We impose the Dirichlet boundary conditions on r 1 C aQ and the Neumann boundary conditions 
on r 2 aQ \ r 1, where both and r2 are a finite union of connected components. We obtain 

u(x) g(x) for x E r 1 , 

a(u(x),p(x))n(x) h(x) for x E r 2 , 

where a is the stress ten::;or, 
a(u, p) = 2vD(u) pl. 

Let X (Hl(Q))2. The admissible class of velocity fields u is defined a::; 

Xg {u E X: u(x) = g(x) for x E r 1}. 

neompressibility i::; enforced 
an additional of variations in the admissible 

class Xg • It is defined by v E Xo, integrating by parts 
over Q and using the buul1U<u.y 

( vD(u) : \7v dx (p div(v) dx = { F· v dx + ( h· v dx. (5)
in 	 in in ir, 

Let us introduce the following notations: 

A(u, (2vD(u)) : Dv 

v) In p div(v) dx, 

C(v) { F . v dx + ( h· v dx. 	 (8)in ir, 
Note that the bilinear form A(u, v) is symmetric since \7v can be replaced with D(v). In these 
notations, equation (5) takes the following form 

A(u, v) - I3(p, v) = C(v). 	 (9) 

Now we the incompressibilit) 	 q and integrate over the 
uE such that 

A(u, v) I3(p, v) = Cry) Vv E X O, 
(10){ I3(q, u) 0 	 Vq L2(O). 

In the sequel we assume for simplicity that the measure of is positive, in order to have the 
uniqueness of the vector variable u. Furthermore note that, in the ca.~e r 1 = ao, the pressure 
variable is defined up to a global eonstant and the boundary datum must satisfy the consisteney 
condition Jan g. n = 0, with n the outward unit normal to aQ. 

Discretization on polygons 

Let Qh be a of the It.J'l.t.l()nJ'U domain Q into E. We assume that 
thi::; partition is conformal, i.e. intersection of two different elements and E2 is either a few 
mesh points, or a few mesh edges (two adjaeent elements may share more than one edge) or 
empty. We allow Qh to contain non-eonvex and degenerate elements. 

We assume that the coeffieient v is a constant tensor inside each mesh element. 
The diseretization of problem (10) requires to discretize scalar (elements of L2(Q)) and vector 

(elements of HI (Q)) functions, the bilinear forms A(u, v) and I3(p, v), and the linear form C(v). 

3 

3 



We begin by introducing degrees of freedom for the functions (details are presented later): 

p, S E L2(!1) --+ P,S E Qh, 
(11)

u, v E Hl(!1) --+ U, V E Xh. 

We also define subsets of Xh approximating Xg and Xo to be X~ and xg, respectively. Next, 
we discretize the bilinear and linear forms: 

A(u,v) --+ V T AU, 

B(p,v) --+ VTDP, (12) 
[(v) --+ V T L, 

where A is symmetric semi-definite matrix with three null models corresponding to the rigid 
body motion. This gives the following algebraic problem: Find U E X; and P E Qh such that 

V T AU - VTDP VT L \IV E xg, 
UTDS o \IS E Qh. 

This problem can be written in the following matrix form 

\IV E xg and \IS E Qh. (13)[~ r[~ ~T][ ~ ]= [ ~ ] 

In practice, it may be convenient to eliminate degrees of freedom corresponding to the Dirich
let boundary conditions (see section 3.5). This results in a saddle point problem: 

[ Ao -Dr] [Uo 1= ] , [ Gu (14)
-Do 0 P Gp 

where Ao and Do are sub-matrices of A and D, respectively. Now the matrix Ao is symmetric 
positive definite and a number of iterative solvers can be used to solve the saddle point problem 
(14). 

3.1 Discretization of scalar and vector functions 

Let us consider a sample element E, shown on Fig.I. We denote the number of its vertices by 
N(E). Note that the number of its edges is also N(E). Let DE(X) be the external unit normal 
vector to the boundary BE at the point x. 

For scalar functions (e.g., pressure p), we specify one degree of freedom per element, PE, 
for instance, the value of p at the center of mass of E. The local approximation space QE has 
dimension one and isomorphic to the space of constant functions on E. Dimension of the global 
space Qh equals to the number of mesh elements, N(!1 h ). 

Let us specify degrees of freedom for vector functions such as the velocity u. For each vertex 
ai of a polygonal element E, we define two degrees of freedom: the value of u at ai, i.e. 

X(Ui , UnT := u(ai), i = 1, ... ,N(E). 

For each edge ei of E, we specify one degree of freedom: the average flux through the edge, i.e. 

eUi := _111 ru(s) . DE ds. 
e't lei 

The local approximation space X~ on the polygonal element E is uniquely characterized by 
3N(E) degrees of freedom. The dimension of the global space X h is twice the number of mesh 
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Figure 1: Left picture introduces notations used through the paper. Right picture shows the 
of freedom for the pressure (red box) and velocity (blue circles and arrows). 

vertices plUH the number of mesh The dimension of space::; X~ and X~ equals to the 
dimension of X h minus twice the number of Dirichlet and the number of Dirichlet edges. 

Let be the restriction of U E X h to the element 

T 
UE Uf, Uf, U!, , ... , U~'iV(E)' lZV(E») 

Later we show that the space XE of algebraic vectors of size D(E) 3N(E) is isomorphic to 
a specially space VE of veetor functions. In other words, for every in there 
exists a unique vector function UE in 

3.2 Discretization of A(U , v) 


Let us break the bilinear form A(u, v) into smaller pieces: 


A(u, v) L AE(uE, VE), 

EEnh 

which is the standard step in a stiffness matrix. Let UE, E XE be vector repre
sentations of functions UE, VE VI;;. 

AE VE == AR(UE, is 2v : D(VE) c1x. 

The goal of this section is to derive formulas for calculating entries of elemental matrices A E. SO 
far, we have followed roughly the finite clement path. The next step would require to formulate 
basis functions for a polygonal element which is a challenging problem. From this moment and 
on, we avoid this problem by using the Pi-compatibility property of functions from VE • We 
write VE as a direct sum of two linear spaces: 

VE,l EB VE ,2. (16) 

We define VE,! as a space of linear vector functions, = (p\(E»)2. The dimension of 
VR,l is six. The linear part in VE is necessary to have a second-order convergence method. 
The remaining part is defined only partially. The following is the direct consequence of the 

parts formula. 
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3.2.1 PI-compatibility property 

Let Uj E VE,1 and v be a constant tensor. Then, the Pj-compatibility property states that 

rvD(uj): D(VE) dx r (vD(uj)' nE)' VE ds \;IVE EVE. (17)JE JaE 
This implies that calculation of a part of the stiffness matrix AE requires to know v E only 

on edges of E. It is sufficient to build a convergent scheme. We make two assumptions. 

(AI) For any vE EVE, its normal component vE ·nE is quadratic on every edge ei of E. 
it is uniquely determined by the flux Vic and four degrees of freedom at the vertices aj and 
ai+l· 

(A2) For any VE EVE, its tangential component is linear on every edge ej of E. it is 
determined bv four degrees of freedom at the vertices ai and aj+l 

These conditions velOCIty function across mesh 
notation on we unmediately have 

1VE' ti ds . ti, 
e, 

where ti is a tangential unit vector to ej. 

Let rPi' i = 1, ... ,VeE) form a basis in VE. The first six vector functions forming a hasis in 
VE,1 are 

rPl(X'Y)=[~]' rP2(X,y) = ~ [ !x ] , rP3(X, Y) = [ ~ ] , 
(19) 

rP1(x,y) I ~ ] , rPs(x, Y) = 4 [ ; ] , rP6(a:,y) [~ 
Note that the first three hasis functions span the space of the rigid body motions, while rPl and 
rP3 alone span the space of translations. The final restriction on the basis functions 

the basis in VR 'J 1 is 

0, 1 :; i :; 6 < j :; 

As shown later, this the structure of the matrix AE. 

3.2.2 Change of basis in 

Let transformation matrix T E act from the basis defined by functions rPi to the basis defined 
by the degrees of freedom (the natural basis in X E ), 

TE {TE,;,;}, TE,i,; - i-th degree of freedom of rPj. (21 ) 

The first six column of are uniquely defined by the choice of the basis functions (19). The 
remaining columns Tj , j > 6, are defined using (20) and the Pj-compatibility property. Let 
R(rPj)' j = 1,2, ",6, indicate the computable vector in JHtD which represents the right hand side 
of (17) 

R(rPjfVE ). nE)' VE ds \;IVE E (22) 

Uj we get 

1:;i:;6<j:; 
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6 
The fin;t three basis functions 1>i (i = 1,2,3) in VB correspond to the rigid body motions. 
Therefore, R(1>d R(1>2) = R(1>3) = 0 and we get only three conditions to define V( E) 
basis vectors in We add three additional conditions 

1T1j 0 1::;i::;3<6<j VeE). 

Let 
T E : 

be the x (j i + 1) 

T i - j [Ti' , ... , Tj ]. 

matrix obtained by selecting the consecutive columns of 

Using this notation, we may write T1-'D instead of TE. Hereafter, to simplify notatIOns, we 
shall write V instead of VeE). We introduce similar notations for matrices R i - j formed 
vectors Ri R(1)i), i = 1,. " ,6. Let us define RE RI-O and summarize the above results: 

R I -3 = 0, (24) 

AET1 - O R E, (25) 

TL6 RE TL6 AE Tl-6 Ak~, (26) 

A E T l - 6 = 0, 

TL'DTI-3 = O. 

Note that the entries of the symmetric 6 x 6 matrix Ak1 defined in (26) are calculated directly 
the basis functions (19) in formula (17). Since these basis functions are the in

tegration is simple. Moreover, (24) implies that the corresponding entries of matrix A1} are 
zeros, 

-11 [0 0]
AE = -11) (29) 
o SE 

where each block is a 3 x 3 matrix. In a special case when // is a scalar, the matrix is 
diagonal. In a case, this matrix is positive definite for any positive definite tensor II. 

Ot"'lerve that the last V - 6 columns of TE can be chosen to be mutually orthogonal and 
can be scaled arbitrarily. It will be convenient to assume that 

TL'DT7-'D !EI I 'D-6, (:30) 

where I'D-6 represents the identity matrix. 
The following results shows that vectors Tj , j = 1, ... , V, do form a basis in XE. 

Lemma 1. The matrix TE E lltDx'D is invertible. 

Proof. The proof is contradiction. Let us assume that TE V = O. (25)-(27), we 
obtain 

o R1;TEV = A1} .. , V6]'l' = s1} (31)V61· 
Since Ski is definite, the above identity gives V1 = Vs Vo = O. Due to the definition 
of TJ , 12 , 13 and the orthogonality relatiom; (28), (30), the columns Tj with j 1,2,3,7,8, .. ) V 
are linearly independent. Therefore their linear combination is zero only then the corresponding 
weights are zeros. Thus, V O. This proves the assertion of the lemma. D 

Let us define the representation of matrix AE in the new basis Tll . .. ) 1p: 

- TAE TEAETE. (32) 
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The orthogonality (20) and property (26) imply the following 2 x 2 partition of 

l 

[ AOk (33)AOJi ] . 

The matrix AJi can be arbitrary positive definite matrix whose eigenvalues are close to the 
maximum eigenvalue of All. Various choices of AJi define a family of numerical methods 
with equivalent approximation properties. In practice, a reasonable choice for AJi is the scalar 

IV-B. 

C;Ullll'H::"t::" construction of the matrix A E . 

A! and A2 rl.,,,,,rintion of function VE on every of E. Let us 
illustrate how to compute the Ci in the right-hand side of (17). Since /I is a 
con'ltant tensor, u 1 is a linear vector UllC{,lUll, we get that c == 2/1D(ud . ni is a constant vector 
function and 

1. (2/1D(ud . ni)' VE ds 1i (c· ni)(v, ni) ds + 1.(c· t;)(v· t,) ds 

(c· n;}leil Vie + (c· t i ) I~I (ViX + Vi+l' ViY+ Vi~l)T. tt. 

3.2.3 Inexpensive construction of the stiffneSs matrix AE 

Calculation of the matrix AE described above involves inversion of the transformation matrix 
T E. For a quadrilateral element it is a 12 x 12 matrix. In general, complexity of the above 
procedure must be compared with the complexity of iterative solvers for the saddle point problem 

that can be Quite a However, a slight modification of the above argument 
calculating 

=811 
E' 

Then, the form of the matrix AE is 

R 4- 6 (Sll)-1 RL6 + PUEP, 

where P is the orthogonal projector, 

T )-1 TP Iv T I - 6 ( T l _ 6 Tl - T I - 616 

and U E is an arbitrary symmetric positive definite matrix. This new matrix AE belongs to the 
same family of matrices given by (33) and (32). However, now we need to invert only the 3 x 3 
matrix Sll and the 6 x 6 matrix TL6Tl-6' 

For a scalar coefficient II, the matrix Sll has a very simple form, Sll 2/1IEII3 • If we choose 
U E to be a scalar matrix, formula (3.») is simplified: 

AE= RL6+ 2/1 P. 

The structure of the 6 x 6 matrix can be further 
coordinate to the center of mass of E. In this case, vectors 
to 4>1 and 4>3, become orthogonal to the remaining vectors. After rearranging 
columns and rows of we get a block-diagonal matrix. 

Remark 1. It is possible to find an explicit form for a particular choice of the basis functions 
4>i by solving a local problem on E following the path described in [ll} for the diffusion problem. 
Such calculation of basis functions is expensive and therefore is not practical. 
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3.3 Discretization of B(p, v) 

Similar to the we break the bilinear form V) into smaller 

B(p, v) = L VE)' 

Een" 


Since the pressure PE is constant on each polygonal element E, using the divergence theorem 
we have 

BE(PE, VE) LPEdiV(VE) dX=PE L dx = PE f VE' nE ds 
JoE 

PE ~ 1, v E . nE ds PE L 
e,EoE . eiEoE 

This is a sum of the fluxes through the edges of which are our degree~ of freedom. 

3.4 Discretization of .c(v) 

We rewrite lev) as follows: 

lev) L jF'VdX+ Ih·vds. 
Een" E eEr, 

The integral is discretized by assuming that hex) is constant on each edge. Let ei be the 
i-th of polygonal element E and let Xi be the mid-point of ei. Then, using notations in 

1 and assumptions Al and A2, we get 

1; h 'VE ds ~ h(xi) '1, VE cis 

(h(xd' nd LVE' ni cis + (h(x;)· til LVE' ti ds (37) 

(h(x;) . + + . tt· 

The volume integral in (36) is discretized by assuming that F(x) is constant over each element 
E. Let XE be the center of mass of E. We define a quadrature rule with the quadrature points 
at vertices of E and positive weights Wi, i = 1, ... ,NCE) SUdl that the quadrature is exact for 
linear functions. Using this quadrature, we get 

N(E) NCE) 

'" 2TJEf F· VE dx ~ '"L.... Wi F(XE) . vE(ad L.... Wi (Vi1 ,V,) . F(XE). (38) 

We choose the weights Wi as the coefficients in a formula that defines the center of mass of E 
via coordinates of its vertices. 

3.5 Boundary conditions 

In the variational problem, the Dirichlet type boundary conditions manifest themselves through 
the admissible class (4), while the Neumann type boundary conditions only effect the linear 
functional lev). 

The discrete Dirichlet boundary conditions on r 1 appear through the definition of the class 
and the space x/f. That is the values of the degrees of freedom corresponding to the vertices 

on the boundary 1\ are prescribed. For a boundary vertex ai E fl we define 
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For a OUUllual ei E r I we define 

1 g(s) . nE ds. (40)L 

e, 

Let us denote by Uo and Vo the part of U and V, respectively, that does not contain the 
degrees of freedom specified by the Dirichlet boundary conditions (39)-(40). Substituting (39)
(40) into (13) and eliminating equations corresponding to the Dirichlet degrees of freedom, we 
obtain the linear system (14) for Uo and P. 

4 Stability analysis 

In this section, we study stability of the MFD discretization, which is impottant for demon
strating convergence of the numerical method. The stability analysis of saddle point nr.,hIArrl<l 

requires to prove two The first inequality is the coercivity of the bilinear form 
A with respect to a natural norm in Xl< (see Theorem 1). The second inequality is the in/-sup 
condition (see section 

4.1 Coercivity of bilinear form A 

4.1.1 Natural norm in 

In order to show the coercivity of the bilinear form A we need to define a norm on the space xli'. 
Since the shape functions 4>7' ... ,4>3N are not know inside the elements we cannot use 
for the space X(~. Our goal is to define an analog of HI-norm that would only use the known 
information about the space X6'. 

Due to (AI) and (A2), for any VE E X E , the corresponding vector function VE E VE is 
completely determined on DE. Analogous to HI-norm, our norm should depend on the derivative 
of the function and scale appropriately under change of coordinates/scaling. 

Therefore we can define the following semi norm on X E : 

N(E) (d 2 

VVE E X E , (41)IIIVEIII~ t; leil Jet Cs VE(S)) ds 

where f. is the derivative. 
Recall that the basis functions 4>1,4>2,4>3 represent the rigid motions of E and correspond 

In the sequel we use II . II for the standard Euclidean norm on JPl.m. Whenever m is different 

to the basis vectors 
motions is 

E X E . The natural local seminorm that vanishes on rigid body 

+ VVE E X E • 

In the above 
ignores (,-Onstant functions. 

basis functions 4>1 and 4>3 as due to differentiation 

from V, we use the lower-case letters Q, II and :lQ for vectors in JPl.m. We also introduce the 
following seminorm: 

m 

IIQI/; := L>;, VY.. E JPI."', m > 3. 
i=4 

Finally, we define the broken seminorm on the space Xl<: 

1/lV1I1::= L IIIVEilI:,E' (43) 
EEn" 

This seminorm becomes a norm on the space X(~. The goal of the next subsections is to prove 
the coercivity of the bilinear form A with respect to the norm III . 

10 



4.1.2 Mesh regularity assumptions 

A few quite mesh assumptions introduced in [8] are required for analysis. We assume that 
there exists a compatible decomposition S" of the polygonal mesh nIL into triangles. Moreover, 
there exist mesh independent numbers N. Nand P. > 0, such that: 

• 	 every polygon E E nh admits a decomposition S"IE made of less than N. triangles; 

• 	 for each triangle T E S", the ratio of the radius of the inscribed disk to the diameter of T 
is bounded from below by p•. 

We do not need to build the UtCVll1l'<RIl 	 It suffices to know that it does exist. 

• 	 The number of N( E) of each polygon E is uniformly bounded. 

• 	 There exists a constant (7* dependent only of N. and P., such that 

leil 2: (7.diam(E) and lEI 2: (7.diam(E? 


for every edge ei of E. 


4.1.3 Main result 


Hereafter, C, C1 and are generic positive constants, possibly different at each occurrence, 

independent of the mesh. These constants may depend on the tensor v and the shape regularity 
parameters N.i, p. and (J., introduced in Section 4.1.2. 

Lemma 2. The symmetric 3 x 3 matrix S11 , introdnr:f'A in (29), satisfies 

C1 12:::;:l? S},} 1!. E Jl1t3. 

The result follows from the definition of that are all 
constant tensors. With a sealing argument 

(SM ,l vD(4)i) : D(4)j) dx (vD(¢;) : D(4)j)) i,j 4,5,6 

and that the fourth order tensor v is positive definite, 	 o 

As a consequenee of the scaling choice (34) we also have 


:::; A1;1!.:::; E 


first and then we have 


vIAEVp; = 1QTAE1Q + 1J..TA711J.. 
-11 T T - 22= (U4,U5,U6)SE (U4,US,U6) +1!. A E 1J.., 

From this equality, using Lemma 2 and (45) it immediately follows 

C1 I: + :::; C2 + 
for all E :If E Jl1to and 1!. E sueh that 

VE = T1Q = T7-V!L . 

We ean now present the following Lemma. 
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Lemma 3. There exists a positive constant O;E, depending only on the tensor /J and the geometric 
constants in Section 4.1.2, such that 

AE(VE, VE) = vIAEVE 20;ElllVeIIl:,E VVE E X E . 

Proof. Let VE E XE == JRD. Since the matrix T is invertible, for each VE, there exist two 
unique vectors 1J. E jR6 and:?l. E jRD-6 such that (47) holds. 

The triangle inequality gives 

IllVeIII: ,E ::::: 211ITI- 61J.111:,E + 211IT7-D:?l.III: ,E' (48) 

By definition of the norm (42) and of the Tj , j = 1,2, .. ,6, 

6 6 D d 2 

IIIT I- 61J.111:,E ::::: 3 f; u; IIITjlll:,E = 3 f; u; ~ leil L(dS ¢>j) 

Since all the derivatives of the ¢>j are bounded by 1, and leil 2 ::::: ClEI, we get 

6 D 
2 (49)IIITI-61J.111:,E ::::: CL u; L leil ::::: CIEIII1J.II:· 

j=4 i=1 

We now observe that, for all WE E X E, the restriction of the associated function WE to the 
boundary is a piecewise polynomial function. Therefore an edge-by-edge standard inverse in
equality gives 

N(E) d 
IIIWEIII~ = ~ leil L(ds wE(s))2ds::::: CliwE/li~(aE) . (50) 

The definition of the degrees of freedom in Section 3.1, combined with (50), easily implies 

2IIIWEIII~ ::::: CIIWEII VWE E X E . (51) 

Using (28), (51) and recalling the scaling assumption (30) yields 

2
IIIT7- D:?l.III:.E ::::: IIIT7-D:?l.III~ ::::: CIIT7_D:?l.1I = CIEIII:?l.W· (52) 

The result follows combining (48), (49) and (52) with lower bounds in (46): 

IlIVeIIl:,E ::::: C lEI (II.'!!II: + 11:?l.112) ::::: C I (:ll?Ak
l 

1J. +:?l.T A~2:?l.) = C I vIAEVE. 

The assertion of the lemma follows with O;E = C I . D 

The bilinear form AE(VE, VE) is also h-uniformly continuous with respect to the same norm 
III ·111*· This result is shown in Lemma 5 in the Appendix. It does not affect the main results 
of this paper and can be skipped. Two global estimates are presented below. We give the proof 
only of the first one. The second one is proved in Appendix. 

Theorem 1. Let rlh be a connected partition. Then the following holds . 

• 111·111. is a norm on X~ . 

• There exist a positive constant 0; depending only on O;E, such that 

VT A V 2 0; IIIVIII: VV E Xh. (53) 
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Throughout the proof we will need the following definition. For VEE define 

- Tl-3~, 

where f minimizes the seminorm on element E and is different for different elements. Then 
it is obvious that 

T -T
VEAEVE = VEAEVE· 

Now we prove that Iii . III. is a norm on xg. Clearly, III· III. is a seminorm. Thus, it 
remains to show that for any V E X(i, 111V11i. = 0 implies that VE = O. We will prove this 
contradiction. Suppose V E X~, V =I 0 and 111V11i. = O. Then IIIVEIII.,E = 0 for all elements 
E E Oh. Without loss of generality assume that E is the closest element to the boundarv for 
which VE =I 0 but IIIVEIII'.E O. Due to (55) this implied that 

VE = T I - 3 f· (56) 

Since E is the closest element to the boundary, it contains as least one edge along which V is 
zero. Hence, due to (56) VE O. Contradiction. This proves that 111·111. is a norm on xl;. 

Now we use Lemma 3 to show (53) 

VTAV 
.=...::.""'------2:: vIAEVE 

IIIVEIII; 
> min O;E 
- EEOh 

0;, 

EEOh 

This proves the theorem. 0 

Theorem 2. Let meas(r 1 ) > O. Then it holds 

::; C In (2 + v) 'v'V E 

of h, 11·11"" indicates the maximum norm on vectors and V is the vector 

Note that the logarithmic factor in Theorem 2 is sharp and it is not an over-estimation. This 
factor appears essentially because the HI norm in two dimensions does not bound the LOCI norm. 

4.2 Inf-sup condition 

We only show briefly the proof of the following result. 

Theorem 3. It exi.9ts a positive constant (3 independent of h s1tch that for all S E Qh (and the 
associated constant function s) it exists V E X6' (and the associated regulm' 
function Vh) s'uch that 

B(8, v) .2': 1/2 
1* ::; 1 . L: 


EEOh 

Proof. Due to the well known condition [9J of the continuous we have the 
existence of a iT E Xo such that 

2:: L: 1/2 
1 

EEnh 
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we have not achieved spectral 
or the second-order accurate incomplete LU factorization 

with f3' > 0 and of s. We then introduce the piecewise linear function on the 
sub-mesh Sh given by the classical Clement interpolant f161 of V. It holds 

IlvcIIHl(fI) :s: CllvIIHl(fl) :s: C . (60) 

We then introduce V E xg (and the related v) defined on each element E by 

(V;"',vjY) v,,(ai) 1, ... ,N(E) , 
(61)i,i v(s)· neds 1, ... ,N(E) . 

e, 

Due to and the definition of 8 it is easy to check that 

dx 8(s, v) ,8(s,v) sEiv.nedS=LSE 
EEnh e, EEflh 

which together with the first property in (59) immediately implies the first part of (58). The 
second bound in (58) follows with a scaling argument and recalling (60). 0 

5 Numerical experiments 

To measure of a discrete we define two mesh-dependent L2 norms 

andL VEt' 
To solve the saddle point problem (14), we use the iterative solvers with block diagonal 

preconditioners of the form 

Ho 0]
[ OM' 

where Ho is a preconditioner for the matrix Ao and Mo is the diagonal mass matrix with areas 
on the diagonal. To achieve a mesh independent convergence of the iterative process, the 

to Ao. We have verified this for small mesh resolutions 
with either the all!:ebraic 

1/2 

5.1 Random quadrilateral meshes 

Let n be a unit square and v 1/2. We impose the Dirichlet boundary conditions on three 
sides of the unit square and the Neumann boundary condition of the remaining side. These 
conditions are chosen such that the exact solution is 

+xu(x,y) y) 3xy .75. 
-y 

We consider a sequence of randomly perturbed quadrilateral meshes (see Fig.2). A randomly 
mesh is built from a square mesh with mesh size h lin relocating each interior 

mesh node a to a random position inside a square box. The box is centered at a, its sides are 
aligned with the coordinate axis, and its size is h/2. 

The convergence analysis on the sequence of randomly perturbed meshes is the most chal
lenging test for any discretization method. Figure 3 shows the second-order convergence rate 
for the discrete L2 norm of the velocity error and the first-order for the discrete L2 norm of the 
pressure error and the discrete H I norm (43) of the velocity error. 
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Figure 2: A sample 15 x 15 quadrilateral mesh with randomly perturbed vertices and a sample 
polygonal mesh. 
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Figure 3: Left picture shows the streamlines for the discrete solution on the finest mesh. Right 
picture shows graphs of the mesh-dependent £2 and Hl norms of errors. The velocity graphs 
are marked by diamonds and squares (blue lines) and the pressure graph is marked by circles 
(red line). 

5.2 Polygonal meshes 

Let n a unit square and 1/ = 1/2. We consider the Dirichlet boundary value problem 
with the exact solution 

Xy) = e +Y I _11 ] , y) O. 

this solution results in a non-zero 
convergence of the method on a sequence of polygonal meshes. A polygonal mesh 

2) is built in two steps. First, we generate the Voronoi tessellation for the set of 

1.5 



(Xi,j, Yi,j) given 

Xi,j ~i + 0.1 sin(21f~;) sin(21f1)j), i = 0, .. . ,n, 

Yi,j = T/j + 0.1 sin(21f~i) sin(21f1)j), j =O, ... ,n, 


where ~i ih, T/j jh and h = l/n. Second, we move each interior mesh node a to the center 
of mass of a triangle formed by the centers of three Voronoi cells sharing a. 

As shown in Fig. 4, we observe the second-order convergence rate for the discrete norm 
of the velocity error. Some superconvergence (higher order than 1) is observed for the discrete 
HI norm of the velocity error and the discrete L2 norm of the pressure error. This reflects the 
fact that the sequence of polygonal meshes has been build using the smooth map. 

II,... " 
10-' ........ 


" 
'lo'" 

",'. 
"1:1 

.....". 
.'...... 

". ~"'"11. 

1 •••• , ... 

2 ". 

1Ih '''' 

4: Graphs (left is for 1/ that is a scalar and is for 1/ that is a of the mesh-
dependent L2 and lJ 1 norms of errors. The velocity graphs are marked by diamonds and squares 

lines) and the pressure graphs are marked hy circles (red lines). 

5.3 Polygonal meshes and tensor coefficients 

Let us consider the previous but replace the constant viscosity 1/ by a symmetric fourth
order tensor 1/ satisfying (2). Let e = D(u). the reduced Voigt notation, the ,",vmmptri ... 

tensor is defined bv six independent components: 

1/]2 1/]3(JXX] [ 1/11(Jyy 1/12 
1/22 1/23

[ ][;::] [~l(Jxy 1/13 1/33 1/33 

This problem is an intermediate step towards the displacement formulation of a linear 
problem. Therefore, we set 1/11 = 1/22 A + 2p" 1/12 = A and 1/33 4p" all other coefficients are 
then equal to zero. The anisotropic tensor is obtained by setting A 10 and p, = 1. 

The right picture in Fig. 4 shows the second-order convergence rate for the discrete 
norm of the velocity error. Again, super convergence is observed for the other two errors. 
Comparing the two pictures in Fig. 4, we see that the effect of the tensor anisotropy is mild. All 
errors are roughly twice bigger than that for the scalar coefficient 1/. 
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5.4 Locally refined meshes 

Let 0 be again the unit square and v = 2. We consider the Dirichlet boundary value problem 
with the point force F = (15(0.5, 0.5), O)T in the middle of O. The exact solution is 

2 2 2y21 1 + log(x + y ) + -2--2 1 -4xu(x y) = _ x +y (63)'87r -2xy , p(x,y) = X2+y2' 
[ 

x2 + y2 

We study convergence of the method on a sequence of locally refined meshes. The sequence 
starts with the uniform square 16 x 16 mesh. The singular point force is approximated by a 
piecewise constant function with unit integral. On each mesh in the sequence, this function 
equals to zero almost everywhere except in four square cells in the middle of the domain. The 
mesh refinement is based on a simple error indicator - sum of pressure jumps across mesh edges. 
The error threshold for mesh refinement is the average value of this indicator. 

Figure 5: Left picture shows the locally refined mesh after 3 adaptive iterations. Right picture 
shows streamlines of the discrete solution on the most refined mesh. 

Figure 5 indicates strong refinement in the domain center where the solution is singular. 
Since p is not in L2(0), we do not have convergence for the discrete L2 norm of the pressure 
error, see Table 1. For the same reason, the discrete HI norm of the velocity error does not 
converge to zero. However, convergence rate for the discrete L2 norm of the velocity error is 1.7. 
The linear regression method has been used to estimate the error reduction rate with respect to 
the effective mesh size heff = l/JN(Oh). 

N(Oh) Il!Uex - Ullix Il!Uex - UIII. Illpex - PIIIQ 
256 4.47e-2 6.04e-1 2.47e-1 
472 2.56e-2 7.04e-1 2.48e-1 
928 1.46e-2 8.06e-1 2.47e-1 

1924 8.06e-3 9.01e-1 2.47e-1 
3868 4.45e-3 1.02e-2 2.47e-1 

Table 1: Convergence on a sequence of locally refined meshes. 
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6 Conclusion 

We have developed a mimetic finite difference (MFD) method for the Stokes problem. Contrary 
to a finite element method, the MFD method uses only the surface representation of discrete 
unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is 
required, practical implementation of the MFD method is simple for polygonal meshes that may 
include degenerate and non-convex elements. The method is constructed for tensor coefficients, 
which will allow to apply it to a linear elasticity problem. The numerical experiments show the 
second-order convergence for the velocity variable and the first-order for the pressure in mesh 
dependent L2 norms. 
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A Appendix 

Lemma 4. For all VE E X E 

lIVE + TI - 3 £11 ~ CIIIVEllkE. 

span the space of the constant vector fields on E. 
a simDle one dimensional scaliIll! argument on 

N(E) 

min + Cl1>1 + CL L(:s vE(s))Zds VElilk. (65) 
CI1 C3ER 

i=1 

From the definition of the of freedom of X E we now have 

IIVEII ~ CllvEIILoo(oE), 

which combined with (65) gives 

min lIVE + clTI + c3T.,11 ~ C liVE + CI1>1 + ~ 
Cl,C:iER 

The result follows from and definition 

+ TJ-:LICII ~ C + . 0 

Lemma 5. It exists a positive constant depending only on the tensor v and the geometric 
constants in Section 4.1.2, such that 

AE(VE, VE) vIAEVE ~ CEIIIVEIII:,E vVE E X E . 

Proof, U1:iing (47) and the relations (26), (27) it follows 


R~VE R~TI-61!. + R~T7-V1' = A1J1!. ' 
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First due to and Lemma 2, then using we obtain 

I: = CIEI-l1{R~VE . (68) 

A Cauchy-Schwartz inequality applied to (68), llsing also that the first three components of 
R~VE are null, gives 

111£11: ClEI-III1£II*IIR~VEII*, (69) 

which immediately implies 

111£11* :s ClEI-
1 

1IR';;;VEiI . (70) 

Due to the assumptions in Section 4.1.2 and definition (22), it is easy to check that 

:s 1/2 \iW E X E . (71 ) 

and (26) imply that R~Tj = 0 for j = 1,2,3. also and 
afterwards Lemma 4, it follows 

1/2:s + 

The bounds (70) and (72) 

I 2
IIIVEIII •. E 2: ,6EIEI / 111£11* , (73) 

where /3E is a lEI-uniformly positive constant. 
Let (:1 and C2 be two reals, such that 0 < (:1 + (:2 = 1 (exact definition will follow in (76)). 

We now write, using (73), (47) and a triangle inequality, 

IIIVEllkE cIIIIVEIII.,E + C2 

2: (74) 

2: I. 

From bound and we infer 

2: 

where bv C. we labeled the square root of the constant in lVUtll.l1ll5 the choice 

Cl and (76)
C2 = 1+ +C.' 

the bound (75) 
IIIVEIII.,E 2: (X~(IEll/2111£11* + III T 7-D1LIII..E), (77) 

where (X~ = is a lEI-uniform positive constant. First, due to (30), then using the 
orthogonality (28) and finally applying Lemma 4, we get 

IEll/2111L11 IIT 7-D1L11 = m1p31IT7-D:E + Tl :s. (78) 
£E'" 

The result follows, CUlIlUlllllll', and the equivalence o 

19 



Proof of Theorem 2. Let E be a generic element of flh . We call Mj; Hl(E) the space of 
continuouH piecewise quadratic 2-compon€nt vector functions on the local submesh Sh IR. Given 
any V E Xh, we define REV E as the solution of the standard problem 

{l 'ilREV· 'ilwE 0 'v'WE n HJ(E) 
(79) 

REV= vE 	 on DE 

where we recall that v E = viE is known and is piecewise quadratic on DE, as shown 
in Section 3.2. Note that the second condition determines REV on the boundary of E. 
Therefore a well known result on discrete harmonic functions. see for instance [32], gives 

IREVIH'(E) ::; ClVEIIll/2(8E) , 

which recalling (41) and a standard yields 

IREVIH1(E) ::; 	 (80) 

where as usual VE is the vector representation of VE. 
Let now Rh V be the global piecewise quadratic vector function on the triangular submesh 
such that R" VIE RF, V. Recalling the definition of the degrees of freedom of Xh, it is easy 

to check that 
IIVII~ ::; 1100 (n) . 

Combining a classical result, see for instance with the above bound giVE'S 

IIVII~::; Cln(2 + l/h) 

Due to our assumption meas(r1) > 0 we can apply the Korn's inequality, see which using 
(81 ) 

::; Cln(2+ (82) 

Following the notation already introduced in (19), we indicate with <l>f the vector function 
on E which spans the rotations around the barycenter, while we indicate with its vector 
representation in XE. Note that, since <l>f is linear on E and the operator "preserves linear 
functions" by definition, RETP <l>f We then have 

ID(R" Vm~,2(n) = L IID(R BV)II;,2(E) L I~ll + c<l>~)II;,2(E) 
F,En" 	 EEn" 

C 	L I?JJ.lII'il(REv+c<l>f)1112 (E) 
BEn" 

=CL + 
EE!lh 

Using bound (80) and definition (42) it follows 

II'ilRE(V + 	 +cTnl~ = 

The result follows combining (82), with lUl-'U/j1LlUll 3. D 
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