

ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE RAND P-REACTOR VESSELS

B. J. WIERSMA

Savannah River National Laboratory
Materials Science and Technology Directorate

Publication Date: October 2009

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U. S. Department of Energy

We Put Science To Work™

The Savannah River National Laboratory is managed and operated for the U.S. Department of Energy by

SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC

AIKEN, SC USA 29808 • SRNL.DOE.GOV

DISCLAIMER

This report was prepared under an agreement with and funded by the U. S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use of results of such use of any information, product or process disclosed; or 2. representation that such use or results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically identified commercial product, process or service. Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

DOCUMENT: SRNS-STI-2009-00639

<u>TITLE:</u> Assessment of the Potential for Hydrogen Generation During Grouting Operations in the R- and P- Reactor Vessels

APPROVALS		

Date:_____

B. J. Wiersma, Author
Materials Performance and Corrosion Technology
Materials Science and Technology

Date:
B. Garcia-Diaz, Technical Reviewer
Materials Performance and Corrosion Technology
Materials Science and Technology Directorate

Date:
K. E. Zeigler, Manager
Materials Performance and Corrosion Technology
Materials Science and Technology Directorate

J. K. Blankenship, Customer SDD Decommisioning Engineering

October, 2009

SRNL-STI-2009-00639

Table of Contents

Executive Summary	
Introduction	
Approach	
Thermal Analysis	
Determination of Areal Density Ratios	
Determination of Volumetric Flow Rate of Hydrogen	
Results	
Conclusions and Recommendations	22
References	22
APPENDIX	A-1

October, 2009 SRNL-STI-2009-00639

Assessment of the Potential for Hydrogen Generation During Grouting Operations in the R- and P-Reactor Vessels

Executive Summary

The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary.

Various options exist for the type of grout material that may be used for D&D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or portland cement grout (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the R- and P- reactor vessels. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Conservative calculations estimate that either ceramicrete or the silica fume grout may be used to safely grout the R- and P- reactor vessels. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Although these calculations are conservative, there are some measures that may be taken to further minimize the potential for hydrogen evolution.

- 1. Minimize the temperature of the grout as much as practical. Lower temperatures will mean lower hydrogen generation rates. Grout temperatures less than 100 °C should however, still provide an adequate safety margin for the pH 8 and pH 10.4 grout formulations.
- 2. Minimize the fill rate as much as practical. Lowering the fill rate takes advantage of passivation of the aluminum components and hence lower hydrogen generation rates. Fill rates that are less than 2 inches/min will reduce the chance of significant hydrogen build-up.
- 3. Ventilate the building as much as practical (e.g., leave doors open) to further disperse hydrogen. The volumetric hydrogen generation rates however, are low for the pH 8 and pH 10.4 grout, i.e., less than 0.32 ft³/min.

Portland cement grout, on the other hand, for the same range of process parameters does not provide a significant margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations. It is recommended that this grout not be

utilized for this task. If further walk-down inspections of the reactor vessels suggest an increase in the actual areal density of aluminum, the calculations should be re-visited.

Introduction

The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning. D&D activities will consist primarily of immobilizing contaminated components and structures in a grout-like formulation. This report specifically addresses the grouting of the reactor vessels along with the aluminum components that are contained with the vessel [1].

The aluminum components contained in the reactor pose a concern in that aluminum will corrode very rapidly when it comes in contact with the very alkaline grout materials, and as a result produce hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary.

Various options exist for the type of grout material that may be used for D&D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or portland cement grout (pH 12.5). As part of this task, the rate of hydrogen generation in the vessels for grouts with a pH range from 8 to 13 will be calculated. The calculations considered such factors as temperature, the rate at which the grout fills the vessel, the surface area of the components present, the surface area of the reactor vessel and the void volume of the reactor vessel. The principles utilized in calculating the hydrogen generation rate from the R- and P-reactor disassembly basins were employed [2]. The objective of these calculations was to provide input as to which grout formulation is appropriate for the operations so that the risk of hydrogen gas accumulation is minimized.

Approach

Pacific Northwest National Laboratory (PNNL) performed a similar analysis for the K basins at the Hanford Site [3]. This analysis was reviewed and applied to the situation for the R- and P- reactor vessels. The process is as follows:

- 1) Aluminum corrodes upon exposure to the grout.
- 2) Hydrogen is generated as a consequence of the corrosion reaction.
- 3) The gas rises to the surface of the grout in the form of bubbles.
- 4) The bubbles will burst at the grout surface releasing H₂ gas into the stagnant air layer.

This process was modeled by formulating a kinetic law for hydrogen production as a function of CLSM temperature, pH, fill rate and combining it with a model for vertical turbulent diffusion of a light fluid (H₂) through a heavier miscible fluid medium (air).

Vertical turbulent diffusion is a process analogous to molecular diffusion. However, the diffusion coefficient is several orders of magnitude larger than the molecular diffusion coefficient for the H₂/air mixture, because vertical diffusion of the lighter gas is due to buoyancy rather than molecular motion. This model has been confirmed experimentally and has been shown to be effective for predicting diffusion layers that are broader than they are tall [4].

The assumptions used in the analysis were:

- There are openings in the reactor vessel that allow hydrogen to escape the vessel.
- Once the hydrogen reaches the top of the reactor vessel, there is sufficient advection to disperse the hydrogen within the building superstructure.

Based on these assumptions the only place that hydrogen could potentially accumulate is in the region between the grout layer and the top of the reactor vessel.

The first part of the model involved developing a kinetic expression for the generation of hydrogen during the corrosion of aluminum. This kinetic expression can be represented by the following relationship:

$$Q = f(pH, T, h) \tag{1}$$

Where Q is the hydrogen generation rate in cm³/cm²/min, T is the grout temperature in °K, and h is the level of the grout as a function of time t in inches. The derivation of this relationship is shown in the Appendix. The final explicit relationship was:

$$Q = \frac{Q_0 * m * [1 - \exp(-0.0385*H/m)]}{0.0385*H}$$
 (2)

where,

$$Q_o = 3*10^{-14} * \exp(2.0952*pH)*\exp[-5339*(1/T-1/303)]$$
 (3)

Where Qo is the hydrogen generation rate as a function of pH and temperature, m is the rate at which the grout fill level increases with time, and H is the fill level at a given time, t.

Laboratory tests performed at PNNL to measure the hydrogen generation rate of non-corroded aluminum metal coupon immersed in both grout and in saturated Ca(OH)₂ solution provided part of the technical basis for the parameters that go into the equation. The key results from the tests were:

- The initial hydrogen generation rate of non-corroded aluminum metal in a grout mixture at 25 °C is 0.3 cm³/min.
- The hydrogen generation rate of non-corroded aluminum metal in grout decreases to approximately 0.15 cm³/min after 2 to 3 hours of exposure to the grout mixture

at 25 °C. The decrease in corrosion rate is due to the formation of a corrosion product (principally tricalcium aluminum hydroxide and hydrocalumite) layer on the surface of the aluminum metal.

- The hydrogen generation rate for aluminum metal in grout was performed at 27 °C. Extrapolation of this result to hydrogen generation rates for higher grout temperatures was made using the test results from aluminum exposed to Ca(OH)₂ solution (i.e., similar to the pore solution in the grout). However, the five-fold increase in hydrogen generation rate with a 30 °C increase in the Ca(OH)₂ solution temperature is consistent with literature values for hydrogen generation in grout. Matsuo et al. observed a 3 fold increase in hydrogen generation rate with a 30 °C increase in an inhibited grout mixture [5].
- Literature data was also used to obtain the corrosion rate as a function of pH. The corrosion rate was then converted to a hydrogen generation rate assuming that 1.5 moles of hydrogen are generated for every one mole of aluminum that corrodes.

The following conservatisms and uncertainties were considered when applying the data to the R- and P- reactor vessel situation.

- The experimentally measured hydrogen generation rate was determined on clean or non-corroded aluminum metal. The surface of the aluminum metal in the reactor vessels is corroded. The aluminum metal in the reactors has been there for many years and the surface is protected by an oxide film. In either case, the rate of hydrogen generation from corrosion would be lower than that measured for the non-corroded aluminum metal coupons in the laboratory tests.
- The hydrogen generation rate due to aluminum metal corroding in grout is based on only one relevant gas generation test. However, four tests were conducted in a Ca(OH)₂ solution and the results were consistent based on chemical engineering fundamentals (i.e., mass transfer conditions in the grout are poorer than those in the Ca(OH)₂ solution). Additionally, the hydrogen gas generation rate for the aluminum in grout was also comparable to other values in the literature. Matsuo et al. measured a rate of 0.105 cm³/min for aluminum exposed to Portland cement at room temperature [6, 7].

While the last two bullets do indicate that there is uncertainty in the experimental data due to the few number of laboratory tests, it is unlikely that this is significant relative to other conservatisms in the analysis.

The second part of the model involves the mass transport of the hydrogen gas from the surface of the grout to the top of the reactor. The derivation of the mass transport equation is also shown in the Appendix. The following conservatisms and uncertainties were considered when applying the model to the R- and P- reactor vessels.

1) The analysis does not account for dissipation of hydrogen between the surface of the water and the top of the reactor due to advection. Accounting for this phenomenon would minimize the accumulation of hydrogen in this region.

2) The analysis assumed that the hydrogen bubble plume does not expand laterally from the aluminum metal source. In reality, local concentrated sources of aluminum metal will produce a bubble plume which expands laterally as it rises through the grout. Thus, the potential for a local deflagration/explosion is overestimated in this analysis.

The flux of hydrogen away from the surface is related to the superficial velocity, u_0 . The superficial velocity may be expressed as:

$$u_o = \beta^2 * [g * H_o * (1 - (M_{H2}/M_{air})) * X_{LFL}^3]^{1/2}$$
 (4)

where β is a proportionality constant, g is the acceleration of gravity, H_o is the distance between the grout-air interface and the top of the reactor, M is the molecular weight of either hydrogen or air, and X is the volume % of hydrogen in air at the lower flammability limit (LFL). In the case of hydrogen the LFL is 4% by volume.

The incipient flammability condition occurs when the gas generation rate due to corrosion equals the flux of hydrogen through air. The boundary condition at the interface between the grout and air is that the hydrogen gas concentration is at the LFL. For safety class operations, with radioactive materials stored within a vessel, a criterion of 60% LFL is utilized for the evaluation [8]. The equation that describes this condition is:

$$Q * A_{A1} = u_0 * A_a (5)$$

where A_{Al} is the surface area of aluminum in contact with grout and A_a is the void cross-sectional area of the reactor vessel. Equation 5 can be re-arranged to give the critical areal density ratio.

$$[A_{AI}/A_a]_c = u_0/Q \tag{6}$$

For the analysis, a plot of $[A_{Al}/A_a]_c$ vs. H is prepared. Examples of this plot are shown in Figures 1 through 13. If the critical area density is greater than the actual areal density, there is a low probability of a flammable condition. On the other hand if it is less than the actual areal density, there is a possibility of a flammable condition developing.

Thermal Analysis

Calorimetry experiments are being conducted to estimate the temperature rise that will occur in the grout during these operations [9]. Maximum temperatures observed during these tests for the different grout formulations may be used for final calculations. For this assessment, case studies will be performed for grout temperatures between 50 and 100 °C to understand the effect of temperature on the hydrogen generation rate for the various grout formulations.

Determination of Areal Density Ratios

Actual areal density ratios are being calculated based on drawings of the vessel and components within the vessel as well as walk-downs of the R- and P-reactor facilities [10]. Enough information has been gathered to make an estimate of the areal density for the P-reactor vessel, however, the final assessment of the R-reactor vessel is not complete as of the writing of this document. Although it is known that the R-reactor vessel contains fewer aluminum components than the P-reactor vessel and thus the areal density is expected to be lower for R-reactor vessel.

The predominant aluminum components present in the reactor vessels are the universal sleeve housing (USH) and thimble tubes. It will be assumed that the inner and outer surfaces of these components will be exposed to the grout. The aluminum surface area, A_{Al} , as a function of the fill level, H, was calculated from the following relationship:

$$A_{AI}(h) = N_{USH} * \pi * (D_{USH o} + D_{USH i}) * H + N_{T} * \pi * (D_{T o} + D_{T i}) * H$$
(7)

where D is the diameter of the USH or thimble (T) tubes, o represents the exterior surface, i represents the interior surface, and N is the quantity of USH or thimble tubes. The calculation did not include the surface area of the ends of the tubes.

The cross-sectional area of the vessel, A_a, was calculated by subtracting the cross-sectional area of the USHs, thimble tubes, septifoils and spargers from the total tank cross-sectional area. This is represented by the following equation:

$$A_{a} = \pi * D_{t}^{2}/4 - N_{USH} * \pi * (D_{USH_o}^{2} - D_{USH_i}^{2})/4 - N_{T} * \pi * (D_{T_o}^{2} - D_{T_i}^{2})/4 - N_{ss} * \pi * D_{ss}^{2}/4$$
(8)

where a is for the cross-sectional area, t is for the tank, and ss is for the septifoils and the spargers. In P-reactor it is estimated that there are 432 USH tubes, 61 septifoils, and 66 thimble tubes and 6 spargers [11]. The USH tubes have outer and inner diameters, 4.25 inches and 4.00 inches, respectively. The outer and inner diameters for the thimble tubes are 1.5 inches and 1.0 inches, respectively. The septifoils and spargers were modeled as a cylinder with a diameter of 3.5 inches. Calculations of these areas are exhibited in the Appendix.

Determination of Volumetric Flow Rate of Hydrogen

The maximum volumetric flow rate of hydrogen generated during the grouting operations was also estimated. Knowledge of this value will assist in the evaluation of whether or not there is adequate ventilation to effectively disperse the hydrogen. The volumetric flow rate, Q_{TOT} is calculated from the following equation:

$$Q_{TOT} = Q * A_{A1}$$
 (9)

A calculation of this flow rate is exhibited in the Appendix.

Results

The case studies that were performed are summarized in Table 1 and the results are shown in Figures 1 through 13. Some of the key trends were:

- An increase in temperature resulted in a lower critical areal density and therefore greater risk of developing a flammable condition (e.g., compare Figures 1 and 2).
- An increase in pH resulted in a lower critical areal density and therefore a greater risk of developing a flammable condition (e.g., examine any figure).
- An increase in the fill rate resulted in a lower critical areal density, although the effect was not as great as temperature or pH (see Figure 11).
- The 60% LFL criterion provides a significant margin on the risk of developing a flammable condition (e.g., compare figures 2 and 13).
- Although it is not shown, if the actual areal density ratio is greater than that assumed in the analysis, there is a greater risk of developing a flammable condition. On the other hand if it is less than that assumed in the analysis (e.g., R-reactor vessel), there is less of a risk of developing a flammable condition.

The most significant result from these case studies is that it demonstrates that two of the grout formulations, the ceramicrete and the silica fume, should not result in a flammable condition during reactor vessel grouting operations as long as they are within the parameters of the case studies. Even at 60% LFL the critical areal density ratio for the silica fume grout is at least 1 to 2 orders of magnitude greater than actual areal density ratio, while the ratio for the ceramicrete is 3 to 4 orders of magnitude greater. At 100% LFL these margins increase further to 2 to 3 orders of magnitude for the silica fume grout and 4 to 5 orders of magnitude for the ceramicrete. The Portland cement grout appears to be a viable option at low temperatures and low fill rates. However, there is less margin on the flammable condition and temperatures as low as 70 °C may result in not meeting the 60% LFL criterion.

Although these results are encouraging, due to the nature of the accident scenario, taking precautions that minimize the potential for a flammable condition are recommended. These measures include ensuring that the building has adequate ventilation during the grouting process, minimizing the grout temperature, and operating at a slower fill rate. In order to evaluate what would be adequate ventilation, the volumetric flow rate of hydrogen was calculated for each case. The results are summarized in Table 2.

The hydrogen flow rates for the pH 8 and pH 10.4 grout are very small, less than 0.32 ft³/min. The flow rates for the pH 12.5 grout are higher than those for the lower pH grouts, ranging from 0.7 to 26 ft³/min, however, the rates appear to be manageable with proper ventilation.

October, 2009 SRNL-STI-2009-00639

Table 1. Summary of Case Studies

Case	Temperature	Fill Rate	pН	LFL Level
	(°C)	(inches/minute)		(%)
1	50	1	8, 10.4, and 12.5	60
2	100	1	8, 10.4, and 12.5	60
3	70	1	8, 10.4, and 12.5	60
4	80	1	8, 10.4, and 12.5	60
5	50	0.5	8, 10.4, and 12.5	60
6	60	0.5	8, 10.4, and 12.5	60
7	70	0.5	8, 10.4, and 12.5	60
8	50	2	8, 10.4, and 12.5	60
9	60	2	8, 10.4, and 12.5	60
10	70	2	8, 10.4, and 12.5	60
11	70	2, 8, and 16	10.4	60
12	100	2	8, 10.4, and 12.5	60
13	100	1	8, 10.4, and 12.5	100

Table 2. Summary of Volumetric Flow Rates of Hydrogen for the Case Studies.

			pH 10.4	pH 8	pH 12.5
		Fill Rate	Qtot	Qtot	Qtot
Case	Temperature (°C)	(inches/min)	(cu.ft./min)	(cu.ft./min)	(cu.ft./min)
1	50	1	1.80E-02	1.20E-04	1.50E+00
2	100	1	1.60E-01	1.10E-03	1.34E+01
3	70	1	4.70E-02	3.10E-04	3.80E+00
4	80	1	7.30E-02	4.80E-04	6.00E+00
5	50	0.5	9.00E-03	5.90E-05	7.00E-01
6	60	0.5	1.50E-02	9.70E-05	1.20E+00
7	70	0.5	2.40E-02	1.50E-04	1.90E+00
8	50	2	3.50E-02	2.20E-04	2.80E+00
9	60	2	5.70E-02	3.80E-04	4.70E+00
10	70	2	9.20E-02	6.10E-04	7.50E+00
11	70	2	9.20E-02	NA	NA
11	70	8	2.20E-01	NA	NA
11	70	16	2.70E-01	NA	NA
12	100	2	3.20E-01	2.10E-03	2.61E+01
13	100	1	1.60E-01	1.10E-03	1.34E+01

Figure 1. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 1.

Figure 2. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 2.

Figure 3. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 3.

Figure 4. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 4.

Figure 5. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 5.

Figure 6. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 6.

Figure 7. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 7.

Figure 8. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 8.

Figure 9. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 9.

Figure 10. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 10.

Figure 11. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 11.

Figure 12. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 12.

Figure 13. Critical areal density ratio for flammable condition in R& P Reactor Vessels for Case 13.

Conclusions and Recommendations

The evaluation concluded that either ceramicrete or the silica fume grout may be used to safely grout the R- and P- reactor vessels. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Although these calculations are conservative, there are some measures that may be taken to further minimize the potential for hydrogen evolution.

- 1. Minimize the temperature of the grout as much as practical. Lower temperatures will mean lower hydrogen generation rates. Grout temperatures less than 100 °C should however, still provide an adequate safety margin for the pH 8 and pH 10.4 grout formulations.
- 2. Minimize the fill rate as much as practical. Lowering the fill rate takes advantage of passivation of the aluminum components and hence lower hydrogen generation rates. Fill rates that are less than 2 inches/min will reduce the chance of significant hydrogen build-up.
- 3. Ventilate the building as much as practical (e.g., leave doors open) to further disperse hydrogen. The volumetric hydrogen generation rates however, are low for the pH 8 and pH 10.4 grout, i.e., less than 0.32 ft³/min.

Portland cement grout, on the other hand, for the same range of process parameters does not provide a significant margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations. It is recommended that this grout not be utilized for this task. If further walk-down inspections of the reactor vessels suggest an increase in the actual areal density of aluminum, the calculations should be re-visited.

References

- 1. B. J. Wiersma, "Reactive Metal (Al) Interactions During Grouting Operations of the R- and P-Reactor Vessels," SRNL-RP-2009-01198," Rev. 0, September 2009.
- 2. B. J. Wiersma, "Assessment of the Potential for Hydrogen Generation During Grouting Operations in R-Reactor Disassembly Basin", SRNL-STI-20090-00278, April, 2009.
- 3. S. M. Short and B. M. Parker, "Potential for Generation of Flammable Mixtures of Hydrogen from Aluminum-Grout Interaction During Basin Grouting", PNNL-15156, April 2005.
- 4. M. Epstein and J. P. Burelbach, "Transient Vertical Mixing by Natural Convection in a Wide Layer", Int. J. Heat Mass Transfer, Vol. 43, pp. 321-325.
- 5. T. Matsuo, T. Nishi, and M. Matsuda, "LiNO₃ Addition to Prevent Hydrogen Gas Generation from Cement-Solidified Aluminum Wastes", J. Nuclear Science Technology, Vol. 32, No. 9, pp. 912-920, 1995.
- 6. T. Matsuo, et al., "LiNO3 Effect on Corrosion Prevention of Aluminum with Complex Shapes", J. Nuclear Science and Technology, Vol. 34, No. 8, pp. 823-828, 1997.

October, 2009 SRNL-STI-2009-00639

7. T. Matsuo, et al., "Influence of Increased Temperature from Cement Hydration on Aluminum Corrosion Prevention when LiNO3 is Added to the Cement", Nuclear Technology, Vol. 125, pp. 332-336, March 1999.

- 8. B. C. Landeene, "CSTF Flammability Control Program", WSRC-TR-2003-00087, Rev. 13, January 13, 2008.
- 9. H. Guerrero, "Thermo-Physical Characterization of Reactor Vessel Fill Materials for P and R Reactor In-Situ Decommissioning," SRNL-RP-2009-01185, September 2009.
- 10. N. Vrettos, "P&R Reactor Void Volume and Surface Area Derivation", SRNL-L1300-2009-00060, October 15, 2009.
- 11. Personal Communication from W. Epling to G. Rose, "Final As-Left Status of P Reactor Tank", October 9, 2006.

October, 2009 SRNL-STI-2009-00639

APPENDIX

pject	ject R&P Reactor Derivation of Ha					_ \SR
	p = (ter B.J. Wiersm			Sheet No.
1	2 3 4 5 6 7	8 9 10 11	12 13 14 15	16 17 18 19	20 21 22 23 24 25	26 27 28 29
	2 1/					
	Problem: Det	ermine the	hydrogen g	eneration rat	e due to alumin	им
	Corr	osion in	the R&P re	eactor vess	sels.	
	Q	= Hydrogen	generation	cm3/min-cm2		
		ľ				
	Q	= g(h,	T, PH) =	0	(i 4) -] .	
			7 .	1 >1		
			rature of a		te: Height is a fur	action of ti
		PU = grout		grout		
		8				
	g(h) der	rivation				
	Inputs:					
	1) Due to	passivation	reactions Fre	f. IT the	initial Ha control	ling cate
					initial Hz general	tion rate
	decreases	by 507	70 every 3	hours.		tion rate
	decreases	by 507	70 every 3	hours.		tion rate
	decreases	by 507		hours.		hion rate
	decreases Half-life	by 50°	20 every 3 . A g (t)	hours.	= Constant	
	decreases Half-life	by 507	20 every 3 A g. (t)	hours.		
	decreases Half-life	by 50°	20 every 3 A g (t) A dt	hours. A		Q=Be*
	decreases Half-life	dy 507 dy 4 dy - gy = 0	Po every 3 $A g(t)$ $A dt$ $g = Q$	hours. A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q=Be*
	decreases Half-life	d 9 = d 9 = 9	Po every 3 $A g(t)$ $A dt$ $g = Q$	hours. A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Bet
	decreases Half-life	dy 507 dy = dy = 0	Po every 3 A $g(t)$ A dt B \rightarrow	hours. A In g=Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Bet
	decreases Half-life	dy 507 dy = dy = 0	Po every 3 A $g(t)$ A dt B \rightarrow 0.5 = 6	hours. A In g = Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Be AT 2 generation
	decreases Half-life	dy 507 dy = dy = 0	Po every 3 A $g(t)$ A dt B \rightarrow 0.5 = 6	hours. A In g = Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Bet
	decreases Half-life	dy 507 dy = dy	A dt $A = Q = Q = Q = Q = Q = Q = Q = Q = Q = $	hours. A In g = Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Bet
	decreases Half-life	dy 507 dy = dy	Po every 3 A $g(t)$ A dt B \rightarrow 0.5 = 6	hours. A In g = Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Bet
	Half-life Equation Reference:	by 50°, d 3 = d 4 = d 5 = d 5 = d 5 = d 5 = d 6 = d 7 =	Po every 3 A $g(t)$ A dt D $g = Q$ B \rightarrow $0.5 = e$ $Q_0 = 2.31$	hours. A In a = Qoe 3A	= Constant $g = At + B \rightarrow$ $Q_0 = Initial H$ rate	Q = Be 2 generation -2.31 hr

Title of Project R & P Reactor Vessel Reactive Metal Project No. Subject Derivation of H2 Generation Rate Works Computer B.J. Wiersma Date 9/30/09 Sheet No. 2 Vapor linear function 2) Fill level in creases asa Qt=ts of time h= mt m = fill rate in inches /min h=0 Vessel a mass balance at t=to determine the hydrogen generation rate from each volume slice Ach. Ac is the open cross-sectional area of the vessel. A. H gH -3.31× 60 m = Qo m H 2.31x 1hr GOVI 0.0385 H -0.0385 H/m

ct	Derivation	01 H2	ben	cratic	on I	rate		v	Vorks	01-	1				TM	
	sav se s vo	F2 63		Compute	er _D.	J. W	iersma	<u>د</u> ا	Date	913	0/09			-	Sheet	N
1	2 3 4 5	6 7	8 9	10 11	12	3 14	15 16	17 18	8 19	20 21	22	23 24	25 2	:6 27	28	2
	0	(PH,-	-1 -		(+)	11/	-41									
	(Xo	(PH)	-	- 5	(1)	W.	(119									_
																_
	u ()	u)														-
	00	/														_
	Literatu	re Val	1100	ſ.				en tos	a f	- a l	,			ſ		_
	of p		IMC5	10	γ	3r 4 QS1	1001	د احی	01	alux	ninur	и а	Sa	Tur	107101	7.
	D4 P	1														_
	Chatal	ov Cref.	27	Date		300	c									
		27 - 17			. (4)											
		PH			Corre	esion	Rate	(mg/o	(m2-hr)		Co	rrasio	n Rat	to ((mg/	,
		.8					003						0.07		100	
		10				٥.							9.6			
		12.				10							240			
	M=K	ee and	Brown	[re	f. 3]		ata (a 3	000							
		PH			Cor	rosion	Rate	(mg/	cm^2-d	ay)		Corro	sion R	ate	(mg/d	m
		10					0.0			,,			2			
		/1					0.3						30			
		12					4						400	9		
		13					30						3000			
	C.	orrosion	of.	Alumi	num	: A	let n	eactio.	n in	Ca	ustic	2				
			ZA	1 +	34,	-0	=	Al	03 (s.) +	3 H.	2 1				
		•	. 1.	5 m	oles	of	H2	evolv	e 1	for e	ery	In	ole o	f ,	AI	
			(orrode	ed.											_
										<u></u>						
	Refer	ences	1		A			1 -	. 10	-						
		atalov								ria	in A	gueo	us Si	o/uHo	100	
	[3] A.1	. Pourba	ix, 1	VACE	, H	puston	TX	197							nin	

Page A-4

		ctor Vessel Ke Hz Generation	active Metal	Project No	_ /2H2
Ject	Verivation of		B.J. Wiersma		Sheet No.
F	2 3 4 5 6	7 B 9 10 11	D.J. VVIETSMA	18 19 20 21 22 23 24 25 26	27 28 29 2
				10 19 20 21 22 25 27 22 20	27 28 29 3
	Equation	for converting	Correina Vote	to He generation rate	
	29901000	TO CONTRACT	CONTOS (CAR.)	To az generalion race	
	Tdod	Gas Law	V = nP		
		R' = Gas Con	nstart = 0.0821	Q-atm	
			ture = 303 K		
		P = Pressu	re = latm		
					13
		n= moles	= mass Mw		
		MW= Mole	cular wt. of Al =	: 27 g/mole = 27,000 mg	
				more	60 - 1 - A
	PH		Corresion Rate		on Rate Con-1
	8		2.67 _x	10-6	1.85 10"
	10		3.55 x	(10-4	2.47 × 10-9
	10		7.41 x	(10-5	5. Bx 10.10
	1/		1.11 x	(10)	7. 71×10-9
	12		8.88×	10-3	6. 17 × 10 = 2
	12		1.48)	x /D	1.03x10
	/3		1.11 3	r /0	7,71×10-7
		111			11 \ \ -
		1/2 generate	en U(pH)) = Corr. Rate x (1.5 moles mole	SH2 RT
				Mole	771
				P	
			U(1) = 1000	Corr, Rate x 1.5 (0.08	21 2-atm (30)
			(4H) - 11		- /
				/atm	
			= 3	3.73 × 104 * com. rate	
				. 10 x 10 x corr. 1216	

				Reactive Metal		SRS
Subject	Derivation	of H2	Generatio	n Rate	Works	_ 1M
			Computer	B.J. Wiersma	Date 9/36/09	Sheet No. 5
0 1	2 3 4 5	5 6 7 8	9 10 11	12 13 14 15 16 17	18 19 20 21 22 23 24 25 26	27 28 29 30
2		.1		11 (cm²)		
3	P	Н,		U (cm² cn²-min)		
14		8		6.93 × 10-		
5		10		9,22×10-5		
6		10		1.92 × 10-5		
7		//		2.88×104		
В		12		2.31×10-3		
В		12		3.84 x 103		
		13		2.88 × 102		
10						
11	PN	N/ repo	+ Eref 17	U=03 cm3/	on a 48.3 cm² sample	6 6 4 12
12				- I I I I I I I I I I I I I I I I I I I	3, a (8.5 m) Surrep (6	@ 278
13				u = 621	x 10-3 cm3/cm2-nin	
14						
15				1001	e: Hz generation rate in	
					grout agrees w/lite	rature
17		See pl	<u> </u>	11 11		
18					1 Sheet No. 6	
19			(")	3 × 10 4 2.0952	*PH 3	2.0.
50			(PH) =	3×10 e	cm a T=	300
21						
22				Curve was f	itted using EXCEL regr	ession fit
23	S (T)	derivat	tion			
24						
25	- Hy	drogen g	eneration	rate can be	described by the Armen	ius egn.
26						
27			Hz gener	ation in CLOH)) 2 solutions increased by	a
28	fa	actor o	f 5 as	the solution t	emperature increased from	
20	2	3°C +	512°C [ret.[]	emperature increased from	
4.0						
30		Q'	(236) =	Q: exp (- Tre		
31						
32		Q'u	(520) -	- 0'0 exp (= 32	Tact)	
		V 112		3.2	5	
34		(J)	H (521)	=5Q'a(23€)		
35			12 \	JX 0 (230)	(Go to sheet 7)	

Project: R&P Reactor Vessel Reactive Metal Subject: Derivation of Hz generation Rate Computer: B. J. Wiersma Date: 9/30/09 Sheet 1.00E-07 U (cc/min/sq.cm) 1.00E-05 1.00E-01 1.00E+00 1.00E-02 1.00E-04 1.00E-03 6 ∞ $U = 3E-14e^{2.0952*pH}$ Temperature ~ 30 C 9 $R^2 = 0.9823$ **말** 10 $\vec{\exists}$ 12 ಷ

Page A-7

14

Title of Project R & P Reactor Vessel Reactive Metal Project No. Subject Derivation of Hz generation Rete Works Computer B.J. Wiersme Date 10/3/09 Sheet No. 7 5 Q' exp (-Tact) = Q' exp (-Tact) 5 = exp (Tact - Tact) n5 = Tact (296 - 325 Tac+ = 5339 K 5(T) = Q exp (-5339) Qo (PHT) = 3 × 10-4 2.0952 PH exp (-5389 (+-1)) cm [- exp (-0.0385 H) Q = Q. m 0.0385 H Vertical Turbulent Diffusion Eret. 17 Up = Superficial Velocity @ gront Herel H 4. = B = [9 H (1-MH2) X LE] 1/2 XIII = 0.024 Volume 70 Hz @ 6090 of the lower flammability limit Ho = distance from grout level to top of reactor

Ho = (186 - H)

186" = height of Reactor H= level of grout

g = 9.8 m/s²

P = proportionality constant = 0.164 My = Molecular wt of H2 = 29/mole M = Molecular wt of Ar = 29g/mole $u_0 = (0.164)^2 \left[9.8 \frac{m}{5^2} \left(\frac{1.00 \text{ cm}}{1 \text{ m}} \right) \left(186 - \frac{1}{1} \right) \times \left(2.539 \right) \left[1 - \frac{2}{29} \right] \left[0.074 \right] \times \frac{34005}{min}$ Uo = (0.164) [115 + (186-H)] Cm = (m=m)

			tive Metal		
Jer I	vation of Critica			Works Date / 6/7/09	Sheet No
07 14		Computer	U. J. Wiersman		Sheet No
1 2	3 4 5 6 7	8 9 10 11	12 13 14 15 16 1	7 18 19 20 21 22 23 24	25 26 27 28 29
		, 01	1.1.		,1
			1'	on occurs when t	
	gas gene	eration rat	e due to co	prrosion equals th.	2
	turbulent .	diffusion ra	te of hydro	gen through air, Th	2
	boundary Co	phalition is	that the	Hz concentration at	the
	interface	between the	grout and to	he vapor space is a	+ 60° 20 LFL.
	The 60%	LFL criterio	n provides a	safety margin agains	+
	the possibili	ity of deve	loping a flan	mable mixture. This	safety
	mere in is	used for	the flammabi	lity cakulations for th	e radioactive
				le Cref. 4]. The e	
	is:				
		3) A -	· uo Aa	where An is	+10
		Q AA. =	do Ma		
		7		surface area in	
		AAI =	Q Q	and Aa is	1
		Aa	Q	cross-sections	
				the reactor	rvessel
		C A 4			
	A plot	ot Aa	Vs. H (the grout	fill level) is prepar	ed. The
				ature, pH, and fill	
	example	plot is show	un on shee	9. Also included	on the plot
	is the	actual ratio	of AAI/A	as a function of t	1 (see sheet
	10 for	derivation),	If the cal	culated values for A.	Al/Aa are
	less t	han the	actual the ma	rgin on the LFL co	ndition
	has been	n reduced.	Safe aperations	conditions exist	when the
	calculate	d values	are greater to	han the actual value	25,
			0		
	Calculati	ons Horo	performed on	an EXCEL spreads	sheet.
		D c l l	11	lammability Control F) II
	D 1 / / / /	man and the first of the con-		and the property of the first test of the first	_

Project: R&P Reactor Vessel Reactive Metal Subject: Derivation of Critical Areal Density Ratio

Computer: B.J. Wiersma

Date: 10/7/09 (Aal/Aa)c

Page A-10

		18-92)

ENGINEERING COMPUTATION SHEET

ject	C	alcula	tie	าก	of	A	ctua	1 1	trea	}	Den	sity	F	Rati	0		_ \	Vorks	3										/
									C	ompi	uter		3. J.	Wi	ersn	na		Date		10/	22	109					She	et N	lo.
10	2	3	4		5	6	7	8	9	0	11 1	12	3	14	15 11	9 1	7 1	8 19	9 2	0 2	11 2	2	23 1	24 2	25 2	6 27	28	25	9
																													L
									ace		are	GL.	of	a	lum	inc	m	e	(Pos	ed	to	,	gro	at.	U:	se			-
		6	29	ua	tio	2	7																						-
				Α			h /			4/	, /	6			_		<u> </u>				\		1	_	1	Th.			-
			/	441	-		Nu	SH 9	÷ 7,			Du	SH_E	+	Du	H;	<i>) +</i>	Н	+		4	-kt	1	17	7	$\nu_{7.}$;)	94	-
			2		LÞ	1 /) ;,																						ŀ
			3/		T(=		۷, ۷	ich	18																				ŀ
						A	=	4	32	KT	*	4.	25-	4.	9) 1	<i>-</i> 1	0"	+	. (6	*	T	(.5	11	0) *	10	
								1										,						- J					t
							=		11-	7. /.	50	1n	2																Ī
																													I
				ros	55-	2	ect	on	al	A	rea	Ó		R	eact	DY	Ve	3 5 (21.	U:	s -e	(-90	at'i	Dn	8.			
									2													<u></u>							
					A a	=	T	7	Dt	4	,	- 1	Jus	4	11 *	(Du	54 o	- [) U-5 H		1/0	4						-
																1_	Z		2	1			, ,					/	-
												-	N _T	* -	TT *	(D	T-0	- [1-1)/4	1	_	N.	55 X	TI	*	2,	4	-
					٨		_	T /	. (101	-11	2	4	20			1		2.	11 1	4)		, ,			/ -	5 -	. 1	2
					4	-		4	*	174	.15) -	- 4	- 52	*	TX	1	7.25		1	/_	_	66	* T	+	(1.	2 -	1.0	1
															/7	JL.	π		Y_	25	1, 2								1
													,		67	*	4	1	K	ۍ, ح									+
									28	-3-	79	in	2																1
										,		111																	1
																													1
			0	0	Н	=	10																						
							•																						
						4	A) Ta			/	17,	15	0 /	z	1	_	1	13											
							Aa				28	3-	79;	Z			7.	9			1	igre	es	W	E	XC	EL		
																					-	SPr	ead	she	+				-
																									_				-
																										-			
																													-
										-		-									-								4

ENGINEERING COMPUTATION SHEET

	Deriva:																		/16.	109					She	eet No	o
1	2 3	4	5	5	7	8	9 1	0 1	1 1	2 1	3 1	d 1	5 16	17	18	19	20	2	1 22	2	24	4 2	5 26	27	7 28	29	
	Pro	blen	1:	j	Dete	mir	e	the	2	mo	×ĺn	14m		Vol	ume	etric		F/o	w	rat	e	0 +		H ₂ .			
	^									,			, ,					1						190			
	App	road	:h :																							£ 7n	
							1	1					hum			~ 1						7				Eg.	7,6
				7	0	aer	rm	ne					* A		10	7/	ow	12		or	al	un	Inu	m	1		
				I.	ete	vm	no	¥	na	OT	um		Ьу	1	ak	inc	0	leviu	/cti	10	es ((Q				
				l	Nith	<u></u>	esp	act	7	6	H		Set	_+	his	e	que	1	10	-3	ero	6	end		,		
					50	ve	fo		H.	T	he	m	4×1,	nu	n	co	ula	1 a	150	&	-	a+	44	4			
													the														
					Q_{T}	PT	a	+	Hm	ax	a	nd	a	<u> </u>	the		00	un	dar	y	Con	diti	on	. I	+ i	S	
					95	su	neo		+1	197		T,	p	И,	an	1	f:1.	ra	te	RY	e (on.	sten	rt.			
					Ca	cul	ite	7	the	1	ма	im	чт		RTO	_	tor		ach		450	5	hudy	_			
				0			0		1																		
				W.To	7 -	-	X	*	MA	1,																	
					-		Q	AL	M	- 0	_	1 -			1 -	2.0.	395	¥ }	1/	-	1 6	Hi	K-TT-	· [1	1	1 (
							0.	038	5 4		-	1		c.p				•	777		-1	_		<u></u>	NI	(Q	+ [
							(2,,	4	M	* 11			(-	-	ı D	\	١.	4	1	-			7		exp	1
					1				0.0	385	<u></u>	L	Nush	(D	ush_0	, 0	SH_i	ノヤ	194		1-0	T .	Li		L'	EXX) (
								-																_			
								L-							3_												
																			-								
									B		1		ex	ρ (-	,03	385	H)				-	-			
									Ð								P										
				1										/	^	039	5		/ 1-	0.0	38.54	H	7				
*				QI.	H		= 0) =		B		0)	(M	3	exp	-	N)	/	╛				
				0																		-					
			M	in) Wm	Q	is	a	+	ur	per	t	oun	dar	V man	A	Stu	44.0	h	ich	+	of	TPAL	tor	1	86	in
														<u>'</u>			-sw			0							48.6
			G	TOT	is	(alc	ula	ted	1	h	Spr	ead	she	t												

ENGINEERING COMPUTATION SHEET

Derivation & Calculation of Maximum Flow Role of H. Works Computer B.S. Wiccisma Date 10/10/09 Sheet No. 186 incres T = 100 % m = 2 incres/min H 12,5 Num = 432 N = 66 Dun = 4.5° Dun = 4.5° Dun = 4.0° Dun =		ct R Perivat																								TM.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								_ C	ompi	uter	B.J	. h	liers	ima-		[Date		10	161	109					She	eet N	0.
$Q_{ToT} = \frac{0.194 \text{ cm}^3}{m^{3}} \times 2 \frac{1}{m^{3}} \times 1.146 \text{ cm}}{m^{3}} \times 1.146 \text{ cm}}$	1	2 3	4	5	6	7	8	9 1	0	11	12	13 1	4 1	5 16	ť	7 18	3 19	20	2	2	2 2	3	24	25 2	6 2	7 28	29	
$Q_{ToT} = \frac{0.194 \text{ cm}^3}{m^{3}} \times 2 \frac{1}{m^{3}} \times 1.146 \text{ cm}}{m^{3}} \times 1.146 \text{ cm}}$		D	10	<u> </u>		1			T	-	100	0-				2						u	12	<i>c</i> -				
$Q_{ToT} = \frac{0.194 \text{ cm}^3}{m^{3}} \times 2 \frac{1}{m^{3}} \times 1.146 \text{ cm}}{m^{3}} \times 1.146 \text{ cm}}$		a	18	٥	Inc	hes			N	-	-	12	2	m	=	Z,	nch	ek/n	nin		h	Π	-12	2				4
$Q_{ToT} = \frac{0.194 \text{ cm}^3}{m^{3}} \times 2 \frac{1}{m^{3}} \times 1.146 \text{ cm}}{m^{3}} \times 1.146 \text{ cm}}$										2	=	.5	Ja	D	. =	1.0	£1		'		ν _u ,	- H_O	- भः	ده		ush	-	Ti
$Q_{ToT} = \frac{0.194 \text{ cm}^3}{m^{3}} \times 2 \frac{1}{m^{3}} \times 1.146 \text{ cm}}{m^{3}} \times 1.146 \text{ cm}}$				2	=	3	y)(- 14	0	1 P	(2.	095	2.*	DH) *	e	K P	T-5	533	9#	(1/2	73		03	1			
$Q_{ToT} = (0.194 \text{ cm}^2 / 2) \times 2 \text{ inches} \times 1.146 \text{ cm}^3 \times 432(4.25 \text{ in} + 40 \text{ in}) + 6 (1.5 \text{ in} + 1.0)$ $0.03.85 \text{ in}^3 \times [1 - exp(-0.0385]$ $= 73.9,828 \text{ cm}^3 = 0.740 \text{ m}^3 \text{ Hz}$ $= 26.12 \text{ ft}^3 / \text{min} \text{ Hz}$														•						./								
$Q_{ToT} = (0.194 \text{ cm}^2 / 2) \times 2 \text{ inches} \times 1.146 \text{ cm}^3 \times 432(4.25 \text{ in} + 40 \text{ in}) + 6 (1.5 \text{ in} + 1.0)$ $0.03.85 \text{ in}^3 \times [1 - exp(-0.0385]$ $= 73.9,828 \text{ cm}^3 = 0.740 \text{ m}^3 \text{ Hz}$ $= 26.12 \text{ ft}^3 / \text{min} \text{ Hz}$					=		0,1	94		m	3 / un	2/n	nin															
$= 73.9,827 \text{ cm}^3 = 0.740 \text{ m}^3 \text{ H}_2$ $= 26.12 \text{ ft}^3/\text{min} \text{ H}_2$ Conservative because it neglects diffusion of H ₂ through the													į				2											
$= 73.9,827 \text{ cm}^3 = 0.740 \text{ m}^3 \text{ H}_2$ $= 26.12 \text{ ft}^3/\text{min} \text{ H}_2$ Conservative because it neglects diffusion of H ₂ through the							A 4	3	121	<u> </u>		1			4 1	CHAT	pat .						ļ					
$= 73.9,824 \text{ cm}^3 = 0.740 \text{ min}$ $= 26.12 \text{ ft}^3/\text{min} \text{ H}_2$ Conservative because it neglects diffusion of H ₂ through the			Q	QT.	- (0.1	94	CPI	m/m	XX	2	mix	X	€,4	46	in-	*	432	4	,25	in +	4.	o in)+6	6(1	,5.in	+1,0) i
= 739,828 cm3 = 0.740 m3 H2 = 26,12 ft3/min Hz Conservative because it neglects diffusion of H2 through the						-			0.	03	85	· I	М															_
$= 73.9,823 cm^3 = 0.740 m^3 H_2$ $= 26.12 ft^3/min H_2$ Conservative because it neglects diffusion of H_2 through the																				X	F	1	- 6	XF	2 (-	0.03	385	Vn.
Conservative because it neglects diffusion of Hy through the																		:			_			ì	<u> </u>	2	min	
conservative because it neglects diffusion of Hy through the																											<u></u>	
Conservative because it neglects diffusion of Hy through the					_		73	9	82	8	Cm	3		-	n	74	0	m3		Н								-
Conservative because it neglects diffusion of H2 through the								V		1	min		-		, ,	F 12		min		112								-
Conservative because it neglects diffusion of H2 through the																												
Conservative because it neglects diffusion of H2 through the				-	=		26	12	1		f+3	/ in		H.														
											,																	
				Cor	nseri	ativ	e	b	eca	use	85	-	ne	glec	+5	4	; f-fi	sio	И	of	H	2	Hir	ou.	54	the		L
				gro	ut.																							
														1														
																										_		-
																												-
																										-		-
										-																		-
														-														l
						1									1													H
																												-
																1												+
																												t
																												T