Evaluation of an urban vegetative canopy scheme and impact on plume dispersion

PDF Version Also Available for Download.

Description

The Quick Urban and Industrial Complex (QUIC) atmospheric dispersion modeling system attempts to fill an important gap between the fast, but nonbuilding-aware Gaussian plume models and the building-aware but slow computational fluid dynamics (CFD) models. While Gaussian models have the ability to give answers quickly to emergency responders, they are unlikely to be able to adequately account for the effects of the building-induced complex flow patterns on the near-source dispersion of contaminants. QUIC uses a diagnostic massconsistent empirical wind model called QUIC-URB that is based on the methodology of Rockle (1990), (see also Kaplan and Dinar 1996). In this approach, ... continued below

Creation Information

Nelson, Matthew A; Williams, Michael D; Zajic, Dragan; Brown, Michael J & Pardyjak, Eric R January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Quick Urban and Industrial Complex (QUIC) atmospheric dispersion modeling system attempts to fill an important gap between the fast, but nonbuilding-aware Gaussian plume models and the building-aware but slow computational fluid dynamics (CFD) models. While Gaussian models have the ability to give answers quickly to emergency responders, they are unlikely to be able to adequately account for the effects of the building-induced complex flow patterns on the near-source dispersion of contaminants. QUIC uses a diagnostic massconsistent empirical wind model called QUIC-URB that is based on the methodology of Rockle (1990), (see also Kaplan and Dinar 1996). In this approach, the recirculation zones that form around and between buildings are inserted into the flow using empirical parameterizations and then the wind field is forced to be mass consistent. Although not as accurate as CFD codes, this approach is several orders of magnitude faster and accounts for the bulk effects of buildings.

Source

  • American Meteorological Society-8th Symposium on the Urban Environment ; January 12, 2009 ; Phoenix, AZ

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-00068
  • Report No.: LA-UR-09-68
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956476
  • Archival Resource Key: ark:/67531/metadc929867

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nelson, Matthew A; Williams, Michael D; Zajic, Dragan; Brown, Michael J & Pardyjak, Eric R. Evaluation of an urban vegetative canopy scheme and impact on plume dispersion, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc929867/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.