Methods to detect faulty splices in the superconducting magnet system of the LHC

PDF Version Also Available for Download.

Description

The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 n{Omega} resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R > 20 n{Omega}. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, ... continued below

Physical Description

3 pages

Creation Information

Bailey, R.; Bellesia, B.; Lasheras, N. Catalan; Dahlerup-Petersen, K.; Denz, R.; Robles, C. et al. May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 n{Omega} resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R > 20 n{Omega}. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 n{Omega} in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 n{Omega} and 50 n{Omega} respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the n{Omega} level.

Physical Description

3 pages

Source

  • Presented at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-09-219-E-PPD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 962755
  • Archival Resource Key: ark:/67531/metadc929766

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Aug. 1, 2017, 11:21 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bailey, R.; Bellesia, B.; Lasheras, N. Catalan; Dahlerup-Petersen, K.; Denz, R.; Robles, C. et al. Methods to detect faulty splices in the superconducting magnet system of the LHC, article, May 1, 2009; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc929766/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.