Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

PDF Version Also Available for Download.

Description

The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) ... continued below

Creation Information

Sjostrom, Sharon & Amrhein, Jerry April 30, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet mercury emissions. This was accomplished and the plant can now be operated to control carbon injection based on either the overall mercury removal or an outlet mercury emission rate. By integrating these systems, it was determined that the plant could reduce powdered activated carbon consumption, especially at low load, because, at Hardin, native mercury capture increases from less than 20% to about 50% at low load and the carbon injection rate can be decreased accordingly. Currently, the plant is operating to automatically control emissions to below 0.9 lb/TBtu (pounds of mercury per million British thermal units) at carbon loadings of 0.5 to 1.5 lb/MMacf. During the final phase of the Long-Term test, the ACI system was operated by plant personnel. The estimated O&M cost for a single Hg-CEM system is $15,500/yr. The Hg-CEMs performed well throughout the project. This project began shortly after Thermo Fisher first offered the Mercury Freedom System™ on a commercial basis and progressed though several iterations, improvements, and upgrades to the hardware and software. Indeed, there was a ten-fold increase in the precision and accuracy of the units during the course of the project due to several successful upgrades. In their present condition, the Hg-CEMs measure mercury to a precision of about ± 0.05 μg/wscm (micrograms of mercury per wet standard cubic meter of gas), and only require occasional fine-tuning of the calibration coefficients. The quality assurance/quality control (QA/QC) protocol required to keep the units operating at their optimal performance was also developed and perfected during the course of the project. ADA Environmental Solutions (ADA) developed a daily calibration procedure that surpasses the requirements specified in the Clean Air Mercury Rule (CAMR), and a weekly diagnostic program that ensures that the systems are operating properly and receive the necessary maintenance. For the most part, the systems passed the daily, weekly, and quarterly QA/QC requirements as well as four performance verification tests using the Ontario Hydro (O-H) and Sorbent Trap Methods (STM) for the first test and the EPA Method 30A (M30A) procedure for the remaining three. However, some improvements are still necessary before the system can meet all of the requirements. These involve tests that challenge the system with oxidized mercury (Hg+2). These tests could not be passed at Hardin in spite of trying several improvements suggested by ADA or Thermo Fisher.

Subjects

STI Subject Categories

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-06NT42774
  • DOI: 10.2172/953747 | External Link
  • Office of Scientific & Technical Information Report Number: 953747
  • Archival Resource Key: ark:/67531/metadc929625

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 30, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 6:34 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sjostrom, Sharon & Amrhein, Jerry. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter, report, April 30, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc929625/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.