Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars

PDF Version Also Available for Download.

Description

Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can ... continued below

Physical Description

2 Megabytes

Creation Information

Kurek, Harry & Wagner, John January 25, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

Physical Description

2 Megabytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID/14043-1
  • Grant Number: FC36-01ID14043
  • DOI: 10.2172/970839 | External Link
  • Office of Scientific & Technical Information Report Number: 970839
  • Archival Resource Key: ark:/67531/metadc929510

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 25, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kurek, Harry & Wagner, John. Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars, report, January 25, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc929510/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.