Development of a 10 picosecond time-of-flight Counter

PDF Version Also Available for Download.

Description

This Advanced Detector Research proposal presented a plan to develop an extremely fast time-of-flight detector for measuring the arrival time of beam protons scattered at small angles in high energy hadron colliders, such as the Large Hadron Collider (LHC). The proposed detectors employ a gas or quartz Cerenkov radiator which produce light when a proton passes through them, coupled to a micro-channel plate photomultiplier tube (MCP-PMT) that converts the light to an electrical pulse. The very small jitter of the pulse time provided by the MCP-PMT, combined with downstream electronics that accurately measure the pulse time results in a time-of-flight ... continued below

Physical Description

0.526 MB

Creation Information

Brandt, Andrew G March 18, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This Advanced Detector Research proposal presented a plan to develop an extremely fast time-of-flight detector for measuring the arrival time of beam protons scattered at small angles in high energy hadron colliders, such as the Large Hadron Collider (LHC). The proposed detectors employ a gas or quartz Cerenkov radiator which produce light when a proton passes through them, coupled to a micro-channel plate photomultiplier tube (MCP-PMT) that converts the light to an electrical pulse. The very small jitter of the pulse time provided by the MCP-PMT, combined with downstream electronics that accurately measure the pulse time results in a time-of-flight measurement of unprecedented accuracy. This ADR proposal was extremely successful, culminating in the development of a 10 ps resolution time-of-flight system, about an order of magnitude better than any time-of-flight system previously deployed at a collider experiment. The primary areas of advance were the usage of new radiator geometries providing fast detector signals, using multiple measurements to obtain a superior system resolution, and development of an electronics readout system tuned to maintain the excellent timing afforded by the detector. Test beam and laser tests have improved the knowledge of MCP-PMT’s and enabled the evaluation of the new detector concepts. In addition to being a generally useful detector concept, these fast timing detectors are a major component of proposed upgrades to the LHC ATLAS and CMS detectors, and if deployed could significantly enhance the discovery potential of these detectors, including contributions to the measurement of the properties of the Higgs Boson. In addition to the potential for furthering fundamental understanding of nature, the knowledge gained on MCP-PMT’s could be useful in developing improved versions of these devices which have promise in diverse fields such as biological and medical imaging.

Physical Description

0.526 MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ADR41491/UTA-1 Final Report
  • Grant Number: FG02-07ER41491
  • DOI: 10.2172/973786 | External Link
  • Office of Scientific & Technical Information Report Number: 973786
  • Archival Resource Key: ark:/67531/metadc929506

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 18, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brandt, Andrew G. Development of a 10 picosecond time-of-flight Counter, report, March 18, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc929506/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.