Hydrogen Generation from Sludge Sample Bottles Caused by Radiolysis and Chemistry with Concentration Determination in a SWB or Drum for Transport

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management
Contractor for the U.S. Department of Energy
under Contract DE-AC06-08RL14788

CH2MILL
Plateau Remediation Company
P.O. Box 1600
Richland, Washington 99352

Approved for Public Release;
Further Dissemination Unlimited
Hydrogen Generation from Sludge Sample Bottles Caused by Radiolysis and Chemistry with Concentration Determination in a SWB or Drum for Transport

Document Type: TR

D. L. Riley
Ascendent Engineering & Safety Solutions

Date Published
March 2010

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy
under Contract DE-AC06-08RL14788

CH2MILL
Plateau Remediation Company

P.O. Box 1600
Richland, Washington

Approved for Public Release;
Further Dissemination Unlimited
TRADEMARK DISCLAIMER
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

Total Pages: 50

All trademarks contained within are the properties of the respective owners.
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change – Replace, Add, and Delete Pages</th>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initial Release of engineering analysis per PRC-EDC-09-43822.</td>
<td>AE Bridges 11/23/2009</td>
</tr>
<tr>
<td>1</td>
<td>Complete revision of engineering analysis, incorporating comments from reviewers, per PRC-EDC-09-44072. Added section on thermal load (chemical and radioactive).</td>
<td>AE Bridges 12/18/2009</td>
</tr>
<tr>
<td>2</td>
<td>Complete revision of engineering analysis, incorporating comments from reviewers, per PRC-EDC-10-44704. Added information regarding plutonium water reactions and from PNNL Letter Report 46497-RPT14, “Enthalpies and Free Energies of Reaction for Uranium Phases and Metals of Interest to Transportation of K Basin Sludge.”</td>
<td>AE Bridges 02/03/2010</td>
</tr>
<tr>
<td>3 RS</td>
<td>Complete revision of engineering analysis, incorporating comments from DOE reviewer(s), per PRC-EDC-10-45750.</td>
<td>AE Bridges 3/28/10</td>
</tr>
</tbody>
</table>

Section 1: Identification

<table>
<thead>
<tr>
<th>1. Project Identifier</th>
<th>2. Modification Description Title/Subject</th>
<th>3. Page 1 of 46</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydrogen Generation from Sludge Sample Bottles Caused by Radiolysis and Chemistry with Concentration Determination in a SWB or Drum for Transport</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Use of Form</th>
<th>5. Job Title</th>
<th>6. WBS Number</th>
<th>7. Department/Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X] Calculation</td>
<td>Hydrogen Generation from Sludge Sample Bottles Caused by Radiolysis and Chemistry with Concentration Determination in a SWB or Drum for Transport</td>
<td>NA</td>
<td>Transportation Safety / Nuclear Safety</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF-43821</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[X] Yes</td>
<td>[] 0</td>
<td>3</td>
<td>D. L. Riley</td>
<td>A. E. Bridges</td>
<td>W. S. Edwards</td>
<td>NA</td>
<td>[X] Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[] No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Sign Date</th>
<th>18. Sign Date</th>
<th>19. Sign Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>This calculation determines the hydrogen concentration in a SWB or drum with sludge sample bottles. The hydrogen results from radiolysis and chemistry from the sludge sample bottles inside a Superpig or Piglet. Two Super pigs are placed within a SWB while two Piglets are placed within a drum.</td>
<td>ALL</td>
</tr>
<tr>
<td>1</td>
<td>Complete revision to incorporate comments from DOE reviewer(s). Added section on thermal load from radiolysis and chemical reaction.</td>
<td>ALL</td>
</tr>
<tr>
<td>2</td>
<td>Complete revision to incorporate comments from DOE reviewer(s). Added information regarding plutonium water reactions and from PNNL Letter Report 46497-RPT14, “Enthalpies and Free Energies of Reaction for Uranium Phases and Metals of Interest to Transportation of K Basin Sludge.”</td>
<td>ALL</td>
</tr>
<tr>
<td>3</td>
<td>Complete revision to incorporate comments from DOE reviewer(s).</td>
<td>ALL</td>
</tr>
</tbody>
</table>

Registration Stamp (as applicable): Classification Review:

Signature/Date: Jimmy D. Val 3-29-10
Hydrogen Generation from Sludge Sample Bottles
Caused by Radiolysis and Chemistry with Concentration
Determination in a SWB or Drum for Transport

CONTENTS

1.0 OBJECTIVE ... 3
1.1 Calculation Methodology ... 4
1.2 Inputs Used in this Worksheet .. 4
2.0 H₂ GENERATION ... 4
 2.1 H₂ Generation from the Chemistry of Uranium Metal and Water 5
 2.1.1 Sludge Parameters Used .. 5
 2.1.2 Sludge Equations Used and H₂ Produced ... 6
 2.2 H₂ Generation from Radiolysis .. 7
 2.2.1 H₂ Molar Generation Rate from Radiolysis .. 8
 2.3 Combined Total H₂ Generation and Percent Contributions .. 8
3.0 DIFFUSION OF HYDROGEN .. 9
 3.1 Fick’s Law for Hydrogen Diffusion ... 9
 3.1.1 Diffusion Constant for Hydrogen in Air - Temperature Corrected 10
 3.2 Diffusion in Transport System ... 11
 3.2.1 Hydrogen Concentration in the SWB .. 11
 3.2.2 Hydrogen Concentration in 55-gallon Drum .. 13
 3.3 Heat Source .. 14
 3.3.1 Decay Heat from Radcalc ... 14
 3.3.2 Heat from Exothermic Chemical Reaction .. 14
 3.3.3 Total Thermal Load .. 17
 3.3.4 Thermal Comparison to Referenced Analyses .. 17
4.0 INTERIOR LAYER PRESSURE AVOIDANCE .. 18
 4.1 Super Pig Vent Hole, Flow, and Pressure .. 19
 4.2 Piglet Vent Hole, Flow, and Pressure ... 20
 4.3 Vented Nalgene® Bottle, Flow, and Pressure ... 21
 4.4 Vented Bag with a BOP Filter, Flow, and Pressure ... 21
5.0 RESULTS AND CONCLUSIONS .. 22
6.0 REFERENCES .. 23
7.0 APPENDIX ... 25
 7.1 NucFil Product Specification Data Sheets (-013, and -019) ... 25
 7.2 Piglets in the 55-Gallon Drum (Ref. 22) .. 27
 7.3 Piglets Vented Lid (Ref. 3) .. 28
 7.4 Bottle’s Vented Bag, with BOP Filter (Ref. 18) ... 29
 7.5 BOP Filter Sample Test Report (2 pages total) .. 30
 7.6 Sample Bottle (2 pages total) ... 32
 7.7 Sample Bottle Source Term and H₂ Generation from Radiolysis 34
 7.7.1 600 mL Design Basis Radcalc 4.1 Results Decayed to 1/1/2010 36
 7.7.2 600 mL Design Basis Radcalc 4.1 Results Decayed Nominal 15 day 41
 7.8 PNNL Supplied Data on Plutonium Dioxide Enthalpies and Free Energies of Reaction .. 46
1.0 OBJECTIVE

A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.).

The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied.

This analysis does five things:

1. Estimates the H₂ generation from the reaction of uranium metal with water
2. Estimates the H₂ generation from radiolysis (using Radcalc 4.1)
3. Combines both H₂ generation amounts, from Items 1 and 2, and determines the percent concentration of H₂ in:
 a. the interior of an SWB with two Super Pigs, and
 b. the interior of a 55-gallon drum with two Piglets
4. From the combined gas generation rate, shows that the pressure at internal layers is minimal
5. Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water

Current analysis restrictions and assumptions:

- Steady state, no functions of time
- H₂ generation calculated based on:
 o one temperature, but the temperature is selectable
 o one volume, 600 mL
- The Design Basis inventory is used to calculate:
 o the H₂ production from the chemical reaction of water with uranium metal
 o the H₂ production from radiolysis

Definitions used:

Define a cc: \[cc := cm^3 \]
Density of uranium metal: \[\rho_U := 19.0 \frac{gm}{cc} \]
(Ref. 6, pg B44)
Gas constant: \[R_g := 8.3145 \frac{J}{K \cdot mole} \]
(Ref. 6, pg F-245)
Ambient pressure: \[P := 1atm \]
As both packages and inner layers are vented, the ambient pressure will always be assumed 1 atm.

1.1 Calculation Methodology

This report was prepared using the MathCAD™ program to perform most calculations. This report includes many instances where output from that program is inserted into the text to provide numbers that support the conclusion of this report. That MathCAD™ source file is available upon request.

1.2 Inputs Used in this Worksheet

The default sludge volume will be 600 mL, which is the per-sample-bottle maximum sludge amount. The default temperature will be three different values that will allow the equations to be simultaneously solved to show the results from these three temperatures. The three temperatures correspond to:

- 115 °F The assumed ambient temperature of the sludge
- 145 °F From Section 3.2.2.1, the assumed temperature of the sludge, based on the maximum temperature for a 55-gallon drum, with solar insolation, assuming a 115 °F ambient air temperature (from Ref. 7)
- 157 °F From Section 3.2.1.1, the assumed temperature of the sludge, based on the maximum temperature of the SWB, with solar insolation, assuming a 115 °F ambient air temperature (from Ref. 8)

Assumed sludge volume: \(V_{\text{sludge}} := 600 \cdot \text{ml} \)
(per sample bottle)
\(V_{\text{sludge}} = 600 \cdot \text{cc} \)

Assumed temperatures: \(T_{\text{init}} := \begin{bmatrix} 115 \\ 145 \\ 157 \end{bmatrix} \) °F
\(T_{\text{init}} = \begin{bmatrix} 46.1 \\ 62.8 \\ 69.4 \end{bmatrix} \) °C

2.0 \(\text{H}_2 \) GENERATION

The hydrogen generation will be calculated from two sources, the chemistry of the uranium metal – water interaction and from radiolysis.

In Pacific Northwest National Laboratory's (PNNL) report "Enthalpies and Free Energies of Reaction for Uranium Phases and Metals of Interest to Transportation of K Basin Sludge" (Ref. 9) an evaluation of the hydrogen generation from chemical reactions within the sludge other than the uranium metal-water (the aluminum-water and zirconium-water reactions) showed that "the gas generation testing results with sludge provide no evidence that appreciable Al or Zr metal reacted with water to generate \(\text{H}_2 \) over the temperature range of 40 to 95 °C." (Ref. 9, section 5).

Since "no evidence" was observed for the generation of \(\text{H}_2 \) gas from Al or Zr, the PNNL laboratory tests accounted for all \(\text{H}_2 \) gas generated. Thus the use of the rate equation in section 2.1.2 will be used to account for all \(\text{H}_2 \) gas produced, other than that by radiolysis.
2.1 \textbf{H}_2 \text{ Generation from the Chemistry of Uranium Metal and Water}

2.1.1 \textbf{Sludge Parameters Used}

The sludge parameters were obtained from Ref. 10, Table 2-3 "Properties for Container and Settler Sludge" the "Uranium Metal Fraction in Settled Sludge - Non-Segregated." Ref. 10 establishes the basis for all settler sludge design activities and is appropriate to use for this evaluation.

Design Basis values for uranium metal fraction in sludge:

\[\text{UM}_{\text{con}} := 0.052 \cdot \text{gm} / \text{cc} \]

The resulting mass of metallic uranium in the sludge is:

\[M_{\text{MU}} := \text{UM}_{\text{con}} \cdot V_{\text{sludge}} = 31.2 \cdot \text{gm} \]

From Ref. 11, Table 4-5b "Reactive Sludge Particle Size for Uranium Metal - Segregated," given the largest particle diameter in the sludge is less than 500 \(\mu \text{m} \) (as is the case for Integrated Water Treatment System (IWTS) Settler sludge) then the average effective particle diameter is 375 \(\mu \text{m} \). That value is then used to calculate the total number of uranium metal particles in the container and the total uranium surface area in the sample bottle, which is used to determine the overall uranium metal-water reaction rate.

Uranium metal particle diameter:

\[d := 375 \cdot \mu \text{m} = 1.23 \times 10^{-3} \text{ ft} \]

Volume of a single particle:

\[V_{\text{part}} := \frac{\pi}{6} \cdot d^3 = 2.761 \times 10^{-5} \cdot \text{cc} \]

Mass of a single particle:

\[M_{\text{part}} := V_{\text{part}} \cdot \rho_{\text{U}} = 5.246 \times 10^{-4} \cdot \text{gm} \]

Surface area of a single particle:

\[A_{\text{single}} := \pi \cdot d^2 = 4.418 \times 10^{-3} \cdot \text{cm}^2 \]

Number of particles:

\[N_{\text{part}} := \text{ceil} \left(\frac{M_{\text{MU}}}{M_{\text{part}}} \right) = 59472 \]

Note: "ceil" is the MathCADTM abbreviation for the mathematical function "ceiling" which rounds toward positive infinity generating the nearest integer greater than or equal to the number of particles in question.

Surface area of all particles:

\[A_{\text{all}} := N_{\text{part}} \cdot A_{\text{single}} = 262.7 \cdot \text{cm}^2 \]

The hydrogen gas produced from chemical reaction is determined by the Sludge Treatment Project (STP) rate law (Ref. 11). The rate law represents the culmination of reviewing 60 years of technical literature and is based on a survey of 32 studies resulting in 128 data points. The data points are between the temperatures of 24 °C and 350 °C. The entire 128-point dataset is plotted in Figure 2.2 of Ref. 12 and closely follows an Arrhenius dependence on temperature (the logarithm of the rate is proportional to the inverse absolute temperature) over the range of temperature. As there is some data spread over the range of temperature relative to the Arrhenius fit, an upper and lower bound is provided to allow a 95% confidence limit for the rate equation. The upper and lower bound for 95% confidence is approximately a factor of 3 and is very nearly a constant over the temperature range and is known as the Enhancement Factor.
As discussed in Appendix A of Reference 13, the overall technical basis for using the literature rate for the uranium metal in sludge is supported by the central limit tendency for averages. A sludge sample bottle holds the equivalent of many sludge samples used in the gas generation experiments (note: sample sizes ranged from ~10 to 400 g of sludge). As demonstrated in Figure 2.2 of Ref. 12, there is wide, nonsystematic scatter in the literature data, with some points above and some points below the average. It is expected that a collection of independent sludge samples (equivalent to what may be contained in 600 mL of sludge in a sample bottle) will behave like the literature average.

Over the past 12 years gas generation and uranium corrosion testing has been conducted in support of the STP with genuine sludge, irradiated N-Reactor uranium metal fuel, and un-irradiated uranium metal beads (Ref. 12). In all cases, with sludge and N-Reactor fuel, the measured rate from the testing has been within or below the 95% confidence bounds established from the STP rate law. In one case, with natural uranium beads in a grout waste form, the observed rate was slightly greater than the upper 95% confidence bound.

Consistent with the above from Ref. 11, Table 4-10 "Reaction Rate Enhancement Factor for Reaction of U Metal with Oxygen-Free Water," for the design basis Enhancement Factor (the high value for 95% confidence) is:

\[
\text{Enhancement Factor: } \quad EF := 3
\]

[Note: from Ref. 11, Table 4-10, the rate enhancement factors for design basis are the same as used for safety basis]

2.1.2 Sludge Equations Used and H\(_2\) Produced

From Ref. 11, Table 4-9 "KE & KW Sludge Reaction Rate for Uranium Metal Particulate" shows the equations for weight loss per unit of time and the surface area basis equation \((R_c)\).

From section 1.1:

\[
\begin{align*}
T_{\text{init}} &= \begin{pmatrix} 115 \\ 145 \\ 157 \end{pmatrix} \cdot ^\circ \text{F} \\
T_{\text{init}} &= \begin{pmatrix} 46.1 \\ 62.8 \\ 69.4 \end{pmatrix} \cdot ^\circ \text{C}
\end{align*}
\]

Rate constant:

\[
R_c := \left(\frac{\text{mg}}{\text{cm}^2 \cdot \text{hr}} \right) \cdot 10^{-9.975 - \frac{3565 \text{K}}{T_{\text{init}}}} = \begin{pmatrix} 0.0644 \\ 0.2305 \\ 0.3708 \end{pmatrix} \cdot \frac{\text{mg}}{\text{cm}^2 \cdot \text{hr}}
\]

Weight loss:

\[
\text{Rate} := A_{\text{all}} \cdot EF \cdot R_c = \begin{pmatrix} 50.7 \\ 181.7 \\ 292.3 \end{pmatrix} \cdot \frac{\text{mg}}{\text{hr}} \quad \text{for } 115^\circ \text{F} \quad \text{at } 157^\circ \text{F}
\]
Two moles of hydrogen are produced for every mole of uranium (i.e., $\text{U} + 2 \text{H}_2\text{O} = \text{UO}_2 + 2 \text{H}_2$), so the H_2 production is:

Moles of H_2 produced:

$$n_{\text{H}_2, \text{chem}} = \text{Rate} \cdot \frac{1\text{mol}}{238.05\text{gm}} \cdot 2\text{mol} \cdot \frac{2\text{mol}}{1\text{mol}} = \frac{4.26 \times 10^{-4}}{1.53 \times 10^{-3}} \cdot \frac{2.46 \times 10^{-3}}{1.18 \times 10^{-7}} \cdot \frac{\text{mol}}{\text{hr}}$$

$$n_{\text{H}_2, \text{chem}} = \begin{cases} 1.18 \times 10^{-7} \\ 4.24 \times 10^{-7} \\ 6.82 \times 10^{-7} \end{cases} \cdot \frac{\text{mol}}{\text{sec}}$$

115°F for 145°F

2.2 H_2 Generation from Radiolysis

Ref. 10 provides the source term that is being used for all settler sludge design activities and is appropriate to use for this evaluation. Ref. 14 was used for the water transported in the sample bottles in addition to the sludge. The following summarizes the related applications of these for the analyses:

1) The sludge source data is taken from Ref. 10, Table 2-2a Sludge Radionuclide Inventories (Decayed to 5-31-1998). The sludge inventory is shown in Table 7.7.1 in Appendix 7.7.

2) The volume in the 4.1 L bottle that is not sludge is conservatively assumed to be KE canister water, from Ref. 14, Table 4-1 Nominal Inventory for K Basin Water Associated with Sludge. The "nominal" water source term from this table is used for the design basis inventory.

KE canister water was selected because it has conservative radionuclide content (i.e., ^{137}Cs concentration is an order of magnitude greater than that in KW canister water) and some of the settler sludge originated in the KE Basin. It could be argued that it would be appropriate to use the lower water radionuclide values provided in TI-015 (Ref. 11) Table 4-22 when the settler sludge is in the IWTS settler tanks. However, it would not be appropriate when the settler sludge is retrieved into Engineered Container SCS-CON-230. The TI-015 (Ref.11) Table 4-22, in the 'Note:' to the table, states its values are valid for flowing basin water or sludge staged in a large container such as the Weasel Pit. For small to moderate size vessels or containers, such as the Engineered Container and the sample bottles, Table 4-22 directs the use of HNF-SD-SNF-TI-009 Table 4-1, which is used here.

The inventory shown in Table 7.7.1 in Appendix 7.7.

The inventory shown in Table 7.7.1 in Appendix 7.7 was further decayed by a nominal 15 days to establish a minimal-time Radcalc run to estimate the initial heat and gas generated. The inventory was also decayed in Radcalc 4.1 to 1/1/2010. The largest H_2 generation and thermal heat load, from either the 15-day decayed inventory or the inventory decayed to 1/1/2010 (4,234 days) is conservatively used. Both Radcalc results are included in the Appendix.

An Excel spreadsheet was used to determine the specific inventory for an arbitrary volume of sludge, with the remaining volume consisting of water, as defined above. The results from the spreadsheet were used as inputs for Radcalc which resulted in the H_2 generation results from radiolysis used in this report. The spreadsheet produced the source inventory for 600 mL of sludge (with the remaining volume water) and is shown in Appendix 7.7, Table 7.7.1. The results of the 600 mL Radcalc 4.1 run are shown in Appendix 7.7.
7.7. Sections 7.7.1 and 7.7.2 for the Design Basis for the two different decay times. In this report, only 600 mL of sludge is considered.

Radcalc performs gas calculations at standard pressure and temperature (1 atm and 0 °C). When volume calculations are used throughout this report, the volume flow rate will be temperature adjusted.

Appendix 7.7, Sections 7.7.1 and 7.7.2 contain the complete Radcalc 4.1 output files for 600 mL Design Basis sludge for the two different decay times. Of the two output files, the largest H₂ generation rate for the 600 mL Design Basis sludge is: 0.1002 cc/hr.

2.2.1 H₂ Molar Generation Rate from Radiolysis

The volumetric H₂ generation value from Appendix 7.7, Sections 7.7.1 and 7.7.2 is for 0 °C (Radcalc 4.1 default), and the volumetric generation rate needs to be converted to the molar generation rate at the Radcalc 4.1 default temperature. Note that pressure, at 1 atm, does not need to be adjusted (all layers are vented).

The default Radcalc temperature used in the generated values:

\[T_{\text{Radcalc}} = 0^\circ \text{C} = 273.15 \text{K} \]

The default Radcalc pressure:

\[P = 1 \text{ atm} \]

The volume of sludge is from the input section:

\[V_{\text{sludge}} = 0.6 \text{ L} \]

The max. resulting H₂ generation rate is:

(Appendix 7.7, Section 7.7.2, from the nominal 15-day decay)

\[H_{2\text{rad,D}} = 0.1002 \text{ cc/hr} \]

\[n_{H_2\text{rad}} = \frac{H_{2\text{rad,D}} \cdot P}{R_g \cdot T_{\text{Radcalc}}} = 1.242 \times 10^{-9} \text{ mol/s} \]

Moles of H₂ generated from radiolysis:

\[n_{H_2\text{rad}} = n_{H_2\text{rad,D}} \text{ Design Basis} \]

The Radcalc temperature at 0 °C is used to determine the hydrogen generation from radiolysis in moles per second, and this rate will be used throughout this analysis and is temperature independent. When a volumetric rate is needed, it will be determined based on the temperature of interest in the particular analysis.

2.3 Combined Total H₂ Generation and Percent Contributions

The two sources of hydrogen will now be combined and the resulting percent contribution of each source will be shown.
Total moles of H₂ produced:

\[n_{\text{total}} := n_{\text{H₂_rad}} + n_{\text{H₂_chem}} = \begin{cases} \frac{1.20 \times 10^{-7}}{\text{mol s}} & \text{for } 115°F \\ \frac{4.25 \times 10^{-7}}{\text{mol s}} & \text{for } 145°F \\ \frac{6.83 \times 10^{-7}}{\text{mol s}} & \text{for } 157°F \end{cases} \]

Percent contribution from radiolysis:

\[\text{cont}_{\text{rad}} := \frac{n_{\text{H₂_rad}}}{n_{\text{total}}} = \left(\begin{array}{c} 1.0 \\ 0.3 \\ 0.2 \end{array} \right) \cdot \% \]

Percent contribution from chemistry:

\[\text{cont}_{\text{chem}} := \frac{n_{\text{H₂_chem}}}{n_{\text{total}}} = \left(\begin{array}{c} 99.0 \\ 99.7 \\ 99.8 \end{array} \right) \cdot \% \]

Clearly, the chemical reaction is the predominant form of H₂ generation.

From section 1.1:

\[T_{\text{init}} = \left(\begin{array}{c} 115 \\ 145 \\ 157 \end{array} \right) \cdot °F \quad T_{\text{init}} = \left(\begin{array}{c} 46.1 \\ 62.8 \\ 69.4 \end{array} \right) \cdot °C \]

Total volumetric H₂ generation is:

\[V_{\text{total}} := \frac{n_{\text{total}} \cdot R_g \cdot T_{\text{init}}}{P} = \left(\begin{array}{c} 11.28 \\ 42.19 \\ 69.15 \end{array} \right) \cdot \frac{\text{cc}}{\text{hr}} \quad \text{for } 115°F \]

3.0 DIFFUSION OF HYDROGEN

The hydrogen generation rates, from radiolysis and the metal/water reaction will now be used with the law of diffusion to calculate the percent H₂ concentrations inside the SWB (with Super Pigs) and inside the 55-gallon drum (with Piglets).

Only diffusion will be assumed, which is conservative, as this ignores pressure driven flow from the gas creation, temperature driven flow from temperature differences over time creating pressure differences, convection flow, or buoyant flow.

3.1 Fick’s Law for Hydrogen Diffusion

The release of hydrogen gas (H₂) from a vented package by diffusion through air is modeled according to Fick’s law of diffusion (Ref. 15), which is in the form:

\[j = Q \cdot \frac{dc}{dz} \]

where:
The diffusion flow rate is given by:
\[n = A \cdot j \]
where:
\[A = \text{Cross-sectional area of diffusion path, cm}^2 \]
\[n = \text{Diffusion flow rate, moles/s} \]

Substituting Fick's law into the diffusion flow rate (for \(j \)) gives the following expression for the diffusion flow rate \(n \):
\[n = \left(\frac{Q \cdot A}{dz} \right) \cdot dc \]

The quantity inside the parenthesis is defined as the diffusivity, \(D \), with units of cm\(^3\)/s:
\[D = \left(\frac{Q \cdot A}{dz} \right) \]

The diffusion flow rate can now be simply expressed as:
\[n = D \cdot dc \]

The driving force for hydrogen diffusion from a package is the concentration gradient between the package interior and the surrounding atmosphere, which is approximated as having a hydrogen concentration of zero. Ref. 6 lists the hydrogen concentration of atmospheric air at 0.5 ppm by volume, or 0.00005 vol\%. In this context, \(dc \) represents the overall concentration difference between the package interior and exterior and can be relabeled \(\Delta c \) to distinguish it from the differential concentration gradient. Because the external hydrogen concentration can be assumed zero, \(\Delta c \) is simply the hydrogen concentration inside the package, expressed in volume percent (vol\%).

The diffusion flow rate equation is solved for \(dc \), the hydrogen concentration differential. It will be renamed \(\Delta c \) as discussed above to represent the overall concentration difference between the package interior and exterior. Also, the diffusivity will be renamed to represent the total package diffusivity \(D_{pkg} \) and the flow rate is the molar hydrogen generation rate \(n_{H_2} \) from combining the Radcalc 4.1 radiolysis and the uranium water chemistry interaction.

\[\Delta c = \frac{n_{H_2}}{D_{pkg}} \]

This equation will be used to determine the volume percent of H\(_2\) in the containment boundary.

3.1.1 Diffusion Constant for Hydrogen in Air - Temperature Corrected

The Hydrogen diffusion constant will be corrected for the particular temperature given from the parameter input section above.
Ref. 16, the diffusion constant for hydrogen in air at 273K is:

\[
Q_{273} := 0.611 \text{cm}^2 \text{s}^{-1}
\]

Ref. 16, Perry's Chemical Engineers' Handbook Eq. (3-133) shows that the diffusion constant is proportional to \(T^{1.75}\); the power to which \(T\) is raised depends on the actual temperature (Perry's Sixth Edition, Diffusion Coefficients, page 3-285).

The assumed temperature:

\[
\begin{align*}
T_{\text{init}} &= \left(\begin{array}{c} 319.3 \\ 335.9 \\ 342.6 \end{array} \right) \text{K} \\
T_{\text{init}} &= \left(\begin{array}{c} 115 \\ 145 \\ 157 \end{array} \right) \cdot \degree \text{F} \\
T_{\text{init}} &= \left(\begin{array}{c} 46.1 \\ 62.8 \\ 69.4 \end{array} \right) \cdot \degree \text{C}
\end{align*}
\]

Temperature corrected \(Q\) value:

\[
Q_{\text{H}_2} := Q_{273} \left(\frac{T_{\text{init}}}{273K} \right)^{1.75} = \left(\begin{array}{c} 0.804 \\ 0.878 \\ 0.909 \end{array} \right) \text{cm}^2 \text{sec}^{-1} \text{for} \left(\begin{array}{c} 115 \degree \text{F} \\ 145 \degree \text{F} \\ 157 \degree \text{F} \end{array} \right)
\]

3.2 Diffusion in Transport System

The transport system consists of a Standard Waste Box (SWB, Ref. 5), which contains two Super Pigs (Ref. 1) or a 55-gallon drum (Ref. 17, typical) that contains two shielded container assemblies, Piglets, Ref. 2 and 3. One 4.1 L sample bottle is placed in a vented 12 mil polyurethane bag (Ref. 18) prior to placement in the Super Pig (Ref. 1) or Piglet (Ref. 2 and 3).

The two boundaries that are being credited as the containment boundaries are the SWB for the Super Pig and the 55-gallon drum for the Piglet. Both of these boundaries are vented and the percent \(\text{H}_2\) concentration in these boundaries will be calculated.

3.2.1 Hydrogen Concentration in the SWB

Assume the SWB is vented with "n" NucFil-019 filters, with minimum \(n = 2\) and maximum \(n = 4\). The SWB has two Super Pigs, with each Super Pig containing one sample bottle.

From manufacturers specification sheet:

(for one model NucFil NFT-013 filter Appendix 7.1)

\[
D_{013} := 1.1 \times 10^{-5} \text{mol s}^{-1}
\]

From manufacturers specification sheet:

(for one model NucFil NFT-019 filter Appendix 7.1)

\[
D_{019} := 2.4 \times 10^{-5} \text{mol s}^{-1}
\]

The assumed temperature:

\[
T_{\text{init}} = 319.3 \text{K} \quad T_{\text{init}} = 115 \cdot \degree \text{F} \quad T_{\text{init}} = 46.1 \cdot \degree \text{C}
\]

The assumed pressure:

\(P = 1 \cdot \text{atm}\)
Volumetric filter flow:

Assume the SWB has "n" filters:

The SWB has two Super Pigs:

"n" filters in parallel on SWB:

The volume percent of H₂ in the SWB is:

(For two Super Pigs in the SWB)

This is for the input parameters:

The concentration of hydrogen in the SWB is less than 5%, for the design basis sludge at 115 °F. However, the volume percent will be checked at the solar insolation temperature of the SWB.

3.2.1.1 Hydrogen Concentration in the SWB at Solar Insolation Temperature

The SWB Safety Analysis Report for Packaging (SARP Ref. 8, page xxi-xxii) shows that the maximum SWB temperature does not exceed 69 °C, (157 °F) from solar insolation with an outside air temperature of 115 °F. Page B8-6 shows the maximum temperature is 154.9 °F, which is independent of the internal heat load, from 0 to 4 Watts, which bounds the sludge samples as two bottles produce 0.43 Watts (see section 3.3.3). The assumptions listed for the thermal analysis are on page B8-5 of Ref. 8. The H₂ concentration in the SWB (with up to four filters) will be calculated at 157 °F, to determine if controls are needed to avoid exposure of the SWB to solar insolation.

This worksheet allows the temperature to be adjusted to any value to produce the total H₂ generation. The hydrogen generation value calculated in section 2.3 for 157 °F will now be used.

The assumed temperature:

(SWB maximum Solar)

The total moles of H₂ produced is:

(from one bottle, at 157 °F)

The volumetric total H₂ generation is:

(from one bottle, at 157 °F)

Assume the SWB has "n" filters:

"n" filters in parallel on SWB: (for -013 and -019)
The volume percent of H_2 in the SWB is:
(For two Super Pigs in the SWB at 157 °F with either the -013 or -019 filter).

\[
\text{\%SWB}_{H_2, 2, \text{PIG}, 157F, 19} := \frac{2n_{\text{total}, 2}}{D_{\text{swb, max}, 19}} = 2.8 \cdot \%
\]

\[
\text{\%SWB}_{H_2, 2, \text{PIG}, 157F, 13} := \frac{2n_{\text{total}, 2}}{D_{\text{swb, max}, 13}} = 4.1 \cdot \%
\]

Note that this is for the input parameters: $V_{\text{sludge}} = 600$ mL, and $T_{\text{init}} = 157$ °F

This shows that the SWB does not need controls for solar insolation and can be shipped at ambient temperatures as high as 115 °F when fitted with minimum two NucFil-019 filters or equivalent, or minimum three NucFil-013 filters or equivalent.

3.2.2 Hydrogen Concentration in 55-gallon Drum

Assume the 55-gallon drum is vented with a single NucFil-019 filter (or equivalent) and that the drum contains two Piglets, each with one sample bottle. Assume the temperature is at the ambient 115 °F.

The assumed temperature:
(Drum ambient)

\[
T_{\text{init}} = 319.3K \quad T_{\text{init}} = 115 \cdot \text{°F} \quad T_{\text{init}} = 46.1 \cdot \text{°C}
\]

The drum filter:
(Assume one drum filter)

\[
D_{\text{drum}} := D_{019} = 2.4 \times 10^{-5} \cdot \frac{\text{mol}}{\text{sec}}
\]

The volume percent of H_2 in the drum is:
(For two Piglets in the drum)

\[
\text{\%Drum}_{H_2, 2, \text{PIG}} := \frac{2n_{\text{total}, 0}}{D_{\text{drum}}} = 1.0 \cdot \%
\]

This is for the input parameters:

\[
V_{\text{sludge}} = 600 \cdot \text{mL} \quad T_{\text{init}} = 115 \cdot \text{°F}
\]

3.2.2.1 Hydrogen Concentration in 55-gallon Drum at Solar Insolation Temperature

The previous section shows that the 55-gallon drum meets the less-than 5% H_2 concentration at 115 °F. Ref. 7 shows that 55-gallon drum surface temperatures with solar insolation can reach 145 °F with ambient air at 115 °F, so this analysis will be done using a sludge temperature of 145 °F. This temperature is independent of the internal heat load, from 0 to 12 Watts, which bounds the sludge samples as two pigs produce 0.43 Watts (see section 3.3.3).

The hydrogen generation value calculated in section 2.3 for 145 °F will now be used, which occurs at the maximum temperature for the drum.

For this case, a single 3/4-in filter (-019) will be used:
The assumed temperature:
(Drum maximum Solar)

The total moles of \(H_2 \) produced is:
(from one bottle, at 145 °F)

The volumetric total \(H_2 \) generation is:
(from one bottle, at 145 °F)

The volume percent of \(H_2 \) in the drum is:
(For two Piglets in the drum at 145 °F)

\[
\begin{align*}
\text{Note that this is for the input parameters: } & V_{\text{sludge}} = 600 \text{ mL, and } T_{\text{init}} = 145 \text{ °F} \\
\text{This shows that the drum does not need controls for solar insolation and can be shipped at ambient } & \\
\text{temperatures as high as 115 °F when fitted with a single NucFil-019 filter or equivalent.} \\
\end{align*}
\]

3.3 Heat Source

The total heat will be calculated for both exothermic chemical reaction and from the decay, as reported in the Radcalc 4.1 runs.

In Ref. 9, PNNL evaluated heat production from chemical reactions within the sludge other than the uranium metal-water reaction. PNNL specifically analyzed the aluminum-water and zirconium-water reactions, and concluded that "the gas generation testing results with sludge provide no evidence that appreciable Al or Zr metal reacted with water to generate \(H_2 \) over the temperature range of 40 to 95 °C." PNNL further stated that hydrogen production measured in their sampling activities would have been assumed to have been produced by uranium metal, but an over-prediction of uranium metal with a corresponding under-prediction of "reactable Zr and Al metal" would only result in a small underestimate of total reaction enthalpy (Section 5 of Ref. 9).

3.3.1 Decay Heat from Radcalc

The decay heat from radioactive decay of the source and daughter isotopes is shown in Appendix 7.7, Sections 7.7.1 and 7.7.2 for the two different decay times. The maximum decay heat is 0.032 W for the 600 mL sample of sludge at a decay time of 15 days. Since there will be two sample bottles in each drum or SWB, the maximum radiolytic decay heat is 0.064 W.

3.3.2 Heat from Exothermic Chemical Reaction

In the sections that follow it will be shown that there are small quantities of Al, Zr, and Pu, in comparison with the quantity of U in the sludge. Due to the small quantities and Ref. 9 indicating there is no evidence of appreciable reaction of these materials, the heat from exothermic chemical reaction will be ignored for Al, Zr, and Pu.

There is a large margin between the total heat load calculated in section 3.3.3 (0.43 W for the SWB and 0.29 W for the drum) and the heat load assumed in the referenced thermal analyses of the drum (12 W) and the SWB (4 W) that resulted in the maximum package temperatures with solar insolation used in this report. It was the solar insolation temperatures for the SWB and Drum, with internal heat loads of 4 W and 12 W, respectively, that were used to establish the temperatures assumed in this report. The total
sludge heat load would need to be on the order of ten times greater for the heat load to increase the assumed package temperature for the SWB, or thirty times greater for the heat load to increase the assumed package temperature for the Drum.

Due to these large margins, as shown in Section 3.3.2.2, the increases in the heat load that could be shown for Al, Zr, or Pu would have negligible effects on reducing the margin.

3.3.2.1 Uranium Water Reaction

The uranium metal in the sludge is transported with basin water in the sample container. It is assumed that the mass of water is sufficient to react all the uranium metal and is considered unlimited for the purposes of modeling the exothermic uranium metal and water reaction. The heat for the uranium-water reaction is 127.4 kcal/mole-U (Ref. 19, section 8.1.2.2).

The reaction of uranium in water is represented by (Ref. 19)

\[
U + 2 \text{H}_2\text{O} = \text{UO}_2 + 2 \text{H}_2 + 127.4 \text{kcal/mole of uranium}
\]

The two solar insolation temperatures:

- **SWB:** \(T_{\text{init}, 2} = 157\,^\circ\text{F}\)
- **Drum:** \(T_{\text{init}, 1} = 145\,^\circ\text{F}\)

From section 3.2.1.1 and 3.2.2.1 (SWB and Drum):

The total moles of \(\text{H}_2\) produced is:

\[
\text{n}_{\text{H}_2\text{, total}} := \left(\frac{n_{\text{total}, 2}}{n_{\text{total}, 1}}\right) = \left(\frac{6.833 \times 10^{-7}}{4.252 \times 10^{-7}}\right) \text{mol} / \text{sec}
\]

Thus the moles of uranium reacted is one half the moles of hydration produced:

\[
\text{n}_{\text{U, reacted}} := \frac{n_{\text{H}_2\text{, total}}}{2} = \left(\frac{3.416 \times 10^{-7}}{2.126 \times 10^{-7}}\right) \text{mol} / \text{sec}
\]

Exothermic reaction rate:

\[
\text{U}_\text{thermal rate} := 127.4 \text{kcal/mol} \quad \text{(per mol uranium)}
\]

The number of sample bottles in the package:

\(n_{\text{pigs}} = 2\)

The exothermic heat produced is then:

\(\text{Heat}_{\text{exo, U}} := n_{\text{pigs}} \cdot n_{\text{U, reacted}} \cdot \text{U}_\text{thermal rate}\)

\[
\text{Heat}_{\text{exo, U}} = \left(\frac{0.364}{0.227}\right) \text{W} \\
\text{SWB@157 \, ^\circ\text{F}} \\
\text{Drum@145 \, ^\circ\text{F}}
\]

3.3.2.2 Aluminum and Zirconium Reaction

Section 5.0 of Ref. 9 discusses the confirmation of the corrosion resistance and lack of significant reactivity of aluminum in the K basin water. It also discusses how zirconium has demonstrated outstanding corrosion resistance. The ratio of Al and Zr to that of uranium will be calculated and the low quantity of Al and Zr, along with its corrosion resistance, justifies ignoring the heat source from these materials.
Table 2-3 of Ref. 10 shows the total uranium in the sludge is 1.34 g U/cc. Table 2-5 (Ref. 10) shows the nominal chemical constituents for Al and Zr. Aluminum, in the form of aluminum hydroxide, is present in the sludge at 0.125 g/cc. Zirconium is identified as not being present in the sludge by the table.

Comparing the Al in the sludge to the uranium:

Molecular weight of aluminum hydroxide: \(\text{MW}_{\text{Al} \cdot \text{OH}_3} := (26.982 + 3 \cdot 15.999 + 3 \cdot 1.008) \frac{g}{\text{mol}} = 78.003 \frac{g}{\text{mol}} \)

Molecular weight of aluminum: \(\text{MW}_{\text{Al}} := 26.982 \frac{g}{\text{mol}} \)

The ratio of aluminum in aluminum hydroxide: \(\text{ratio}_{\text{Al}} := \frac{\text{MW}_{\text{Al}}}{\text{MW}_{\text{Al} \cdot \text{OH}_3}} = 34.6 \cdot \% \)

Aluminum hydroxide in settler sludge: \(\text{Al}_{\text{hydro}} := 0.125 \frac{g}{\text{cc}} \)

Aluminum hydroxide in settler sludge: \(\text{Al}_{\text{sludge}} := \text{ratio}_{\text{Al}} \cdot \text{Al}_{\text{hydro}} = 0.043 \frac{g}{\text{cc}} \)

Total uranium in settler sludge: \(\text{U}_{\text{sludge}} := 1.34 \frac{g}{\text{cc}} \)

Ratio of aluminum to total uranium: \(\text{ratio}_{\text{Al to U}} := \frac{\text{Al}_{\text{sludge}}}{\text{U}_{\text{sludge}}} = 3.2 \cdot \% \)

With such a small amount of aluminum relative to uranium in the sludge, the discussion in Ref. 9 on the corrosion resistance of aluminum in the K Basin water, and the large margin of safety discussed in Section 3.3.2, aluminum reactions can be ignored. Also, as Ref. 10, Table 2-5 does not identify any zirconium in the settler sludge and the discussion in Ref. 9 on the outstanding corrosion resistance of zirconium, zirconium reactions will also be ignored.

3.3.2.3 Plutonium Water Reaction

The reaction of plutonium metal with water is shown (Ref. 9) to have slightly less enthalpy and Gibbs free energy to that of uranium (discussed above in section 3.3.2.1). Appendix 7.7 shows the quantity of plutonium and uranium. The ratio of the two quantities will be calculated to show that the plutonium reaction may be ignored.

Using the design basis, decayed to 1/1/2010, Radcalc 4.1 results from Section 7.7.1 shows the quantity, in grams, of uranium as:

\[
\begin{align*}
\text{Qnt}_{\text{U}233} & := 8.633 \times 10^{-8} \cdot \text{gm} \\
\text{Qnt}_{\text{U}234} & := 4.853 \times 10^{-2} \cdot \text{gm} \\
\text{Qnt}_{\text{U}235} & := 4.767 \times 10^{0} \cdot \text{gm} \\
\text{Qnt}_{\text{U}235m} & := 2.728 \times 10^{-9} \cdot \text{gm} \\
\text{Qnt}_{\text{U}236} & := 5.323 \times 10^{-1} \cdot \text{gm} \\
\text{Qnt}_{\text{U}237} & := 4.531 \times 10^{-10} \cdot \text{gm} \\
\text{Qnt}_{\text{U}238} & := 6.248 \times 10^{2} \cdot \text{gm}
\end{align*}
\]

Total uranium is:

\[
\text{Qnt}_{\text{total U}} := \text{Qnt}_{\text{U}233} + \text{Qnt}_{\text{U}234} + \text{Qnt}_{\text{U}235} + \text{Qnt}_{\text{U}235m} + \text{Qnt}_{\text{U}236} + \text{Qnt}_{\text{U}237} + \text{Qnt}_{\text{U}238} = 630.1 \text{gm}
\]
Using the design basis, decayed to 1/1/2010, Radcalc 4.1 results from Section 7.7.1 shows the quantity, in grams, of plutonium as:

\[
\begin{align*}
Q_{nt, Pu^{238}} &:= 1.252 \times 10^{-3} \cdot \text{gm} \\
Q_{nt, Pu^{239}} &:= 1.354 \times 10^{0} \cdot \text{gm} \\
Q_{nt, Pu^{240}} &:= 2.020 \times 10^{-1} \cdot \text{gm} \\
Q_{nt, Pu^{241}} &:= 1.451 \times 10^{-2} \cdot \text{gm} \\
Q_{nt, Pu^{242}} &:= 5.235 \times 10^{-3} \cdot \text{gm}
\end{align*}
\]

Total plutonium is:

\[
Q_{nt, total, Pu} := Q_{nt, Pu^{238}} + Q_{nt, Pu^{239}} + Q_{nt, Pu^{240}} + Q_{nt, Pu^{241}} + Q_{nt, Pu^{242}} = 1.6\text{gm}
\]

The ratio of plutonium to uranium is:

\[
\frac{Q_{nt, total, Pu}}{Q_{nt, total, U}} = 0.002503 \\
\text{Ratio}_{Pu \text{ to } U} = \frac{1}{399.6}
\]

Due to the fact that there is approximately 400 times the amount of uranium to that of plutonium, the plutonium's contribution to thermal heating and hydrogen generation will be ignored.

3.3.3 Total Thermal Load

The total thermal heat load is the sum of that from radiolysis and the exothermic heat of reaction of uranium with water for two sample bottles in either the drum or SWB. This is calculated as

- The Radcalc 4.1 reported thermal load (one pig):
 (Appendix 7.7.1 or 7.7.2)
 \[
 \text{Heat}_{\text{radcalc}} := 0.032 \text{W}
 \]

 \[
 n_{pigs} = 2
 \]

 The total package thermal load is: (two sample bottles)
 \[
 \text{Heat}_{\text{total, per package}} := \text{Heat}_{\text{exo, U}} + n_{pigs} \cdot \text{Heat}_{\text{radcalc}} = \left(\frac{0.43}{0.29}\right) \text{W}
 \]

- SWB
- Drum

3.3.4 Thermal Comparison to Referenced Analyses

As shown in sections 2.1.2, 2.3, and 3.3.2.1, the assumed temperature of the settler sludge determines the volumetric hydrogen gas produced and the exothermic heat load generated. As shown in section 1.2, three temperatures were assumed and used for calculations. The assumed settler sludge temperature used in this report, for the drum and SWB packages, was determined from the maximum reported temperature as shown in the Drum and SWB SARPs. The Drum and SWB SARPs assumed a bounding internal heat load used in the calculations for maximum package temperature with solar insolation. For the drum, the thermal source assumed in Ref. 7 (Drum SARP, Part B, Section 8.2.2.1) is 12 W. For the SWB, the thermal source assumed in Ref. 8 (SWB SARP, Part B, Section 8.3) is 4 W.

There is a large margin between the total heat load calculated in section 3.3.3 (0.43 W for the SWB and 0.29 W for the drum) and the heat load assumed in the reference thermal analyses of the drum (12 W) and the SWB (4 W) that resulted in the maximum package temperature with solar insolation used in this report. Thus the maximum solar insolation temperature reported in Ref. 7 and Ref. 8 is bounding for this analysis, and the assumed reaction rate temperatures are conservative.
4.0 INTERIOR LAYER PRESSURE AVOIDANCE

The NucFil filters have a stated flow rate (air) at 1-in. water column (WC) pressure differential of 200 mL/min. The filters flow rate will be equated to the flow rate through an equivalent cylindrical hole of a known length and known diameter, to show that the filter is equivalent to a hole that gas must pass through. The equivalent hole will then be compared to the holes in the inner layers of the SWB or Drum, to show that inner-layer pressures will not occur.

Density of water:
(25 °C, or 77 °F, Ref. 20) \[\rho_\text{H}_2\text{O} := 997 \text{ kg/m}^3 = 62.24 \text{ lb/ft}^3 \]

Differential pressure at 1-in water column:
\[P_{\text{lin}} := \rho_\text{H}_2\text{O} \cdot g \cdot 1\text{in} = 0.036 \text{ psi} \]

Filter specification flow rate:
(for one filter on the drum, -019) \[\text{Spec}_{019} := 200 \text{ mL/min} = 3.333 \text{ cc/s} \]

The highest flow rate that one filter will see is the single filter on a drum, which was calculated in section 2.3.

\[T_{\text{init}} = 145 \text{ °F} \]

The H$_2$ flow rate in the drum at 145 °F: \[\text{Maxflow} := 2 \cdot \text{Vol}_{\text{total}} = 84.4 \text{ cc/hr} \]

Note: The hydrogen generation could be greater in the SWB due to possible higher temperatures, but the SWB vent path requires multiple filters. The drum only has one filter, so this will be bounding.

The ratio of the gas volume vented at 1-in WC to the gas volume produced:
\[\text{Ratio}_{\text{vent/prod}} := \frac{\text{Spec}_{019}}{\text{Maxflow}} = 142 \]

This ratio shows that even at the highest rate of gas production from both pigs that the drum and SWB filters can easily pass this gas without building any pressure. Finding an equivalent "hole" equal to the filter's flow rate will show that the inner layers will not build pressure.

Poiseuille's law (Ref. 20) relates the volume flow rate for laminar flow through horizontal tubes of diameter D and length L as:
Poiseuille’s law:

\[V_{\text{dot}} = \frac{\Delta P \cdot \pi \cdot D_{\text{eq}}^4}{128 \cdot \mu \cdot L_{\text{eq}}} \]

Dynamic viscosity:

(air at 68 °F, Ref. 20))

\[\mu := 1.825 \times 10^{-5} \frac{\text{kg}}{\text{m} \cdot \text{s}} \]

The pressure is the 1-in. WC:

\[\Delta P := P_{\text{in}} = 0.036 \text{ psi} \]

The flow rate is:

\[V_{\text{dot}} := \text{Spec19} = 3.333 \frac{\text{cc}}{\text{s}} \]

Solving for the diameter:

(as a function of L)

\[D_{\text{eq}}(L_{\text{eq}}) := \sqrt{\frac{V_{\text{dot}} \cdot \left(128 \cdot \mu \cdot L_{\text{eq}}\right)}{\left(\Delta P \cdot \pi\right)}} \]

Assume a 3-in. equivalent L:

\[D_{\text{eq,3}} := D_{\text{eq}}(\text{3in}) = 0.037 \text{ in} \]

Note that the 3-in. length is just to demonstrate the methodology, actual lengths will be used below.

The area of the 3-in. equivalent hole:

\[A_{\text{eq,3}} := \frac{1}{4} \pi \cdot D_{\text{eq,3}}^2 = 1.062 \times 10^{-3} \text{ in}^2 \]

The methodology of this equivalent “hole” calculation will now be compared to the vent holes in the Super Pig, Piglet, and sample bottle.

4.1 Super Pig Vent Hole, Flow, and Pressure

The Super Pig has four vent holes, the holes are half-circles with an \(r = 0.06 \text{ inch} \). The half-hole area will be calculated, then the Super Pigs equivalent vent hole size will be determined, and then compared to the size of hole required to vent the Super Pig with a flow rate equal to the filters.

Length of horizontal vent path:

\[L_{s,\text{pig,h}} := \frac{(12.75 - 6.27)}{2} \text{ in} = 3.24 \text{ in} \]

Diameter of horizontal vent path:

\[D_{\text{a,s,\text{pig,h}}} := 2 \cdot 0.06 \text{ in} \quad \text{Area will be half, as vent is half circle} \]

Area of horizontal lid vent path:

(\text{one vent path})

\[\text{Area}_{s,\text{pig,h}} := \frac{\frac{1}{4} \cdot \pi \cdot D_{\text{a,s,\text{pig,h}}}^2}{2} = 5.655 \times 10^{-3} \text{ in}^2 \]

Diameter of a circular cross section vent with the same area as the Super Pig

(\text{one vent path})

\[D_{\text{a,s,\text{pig,h,eq}}} := \sqrt{\frac{\text{Area}_{s,\text{pig,h}}}{\frac{1}{4} \cdot \pi}} = 0.085 \text{ in} \]

The equivalent diameter of the Super Pig's vent hole (one) to have the same air flow rate as a NucFil filter at 1-in. WC pressure (equation from Section 4.0):
Ratio of actual vent hole (one) to equivalent vent hole:

\[\text{Ratio}_{\text{Superpig}} := \frac{D_{\text{eq}} \left(L_{\text{pig.h}} \right)}{D_{\text{eq}} \left(L_{\text{pig.h}} \right)} = 0.037 \text{in} \]

This shows the Super Pig is adequately vented (assuming just one of the four holes) to avoid pressure in the Super Pig.

Check the Reynolds number to assure the use of Poiseuille's law was correct (properties at room temperature will be conservative).

Average velocity:
\[V_{\text{avg}} := \frac{V_{\text{dot}}}{\text{Area}_{\text{pig.h}}} = 35.97 \text{ in/sec} \]

Kinematic viscosity:
\[\nu := 1.55 \cdot 10^{-05} \text{ m}^2/\text{sec} \]

Reynolds number:
\[\text{Re} := \frac{V_{\text{avg}} \cdot \text{Dia}_{\text{pig.h.eq}}}{\nu} = 127 \]

Clearly the flow is laminar (Re less than 2300), the use of Poiseuille's law is valid, and the Super Pig will not build pressure.

4.2 Piglet Vent Hole, Flow, and Pressure

The Piglet has one vent hole, the hole has a diameter = 0.159-in. This hole will be compared to the size of hole required to vent the Piglet as well as a NucFil filter could vent air at 1-in. WC pressure.

Length of lid vent path:
\[L_{\text{lid.vent}} := 1.75 \text{in} + 2.09 \text{in} = 3.84 \text{ in} \]

Diameter of lid vent path:
\[\text{Dia}_{\text{lid.vent}} := 0.159 \text{in} \]

Area of lid vent path:
\[\text{Area}_{\text{lid.vent}} := \frac{1}{4} \cdot \text{Dia}_{\text{lid.vent}}^2 = 0.020 \text{ in}^2 \]

The equivalent diameter of the Piglet's vent hole to have the same air flow rate as a NucFil filter at 1-in. WC differential pressure (equation from section 4.0):

\[D_{\text{eq, Piglet}} := D_{\text{eq}} \left(L_{\text{lid.vent}} \right) = 0.039 \text{ in} \]

Ratio of actual vent hole to equivalent vent hole:
\[\text{Ratio}_{\text{Piglet}} := \frac{\text{Dia}_{\text{lid.vent}}}{D_{\text{eq, Piglet}}} = 4.1 \]

This shows the Piglet is adequately vented to avoid pressure in the Piglet.

Check the Reynolds number to assure the use of Poiseuille's law was correct.
Clearly the flow is laminar (R_e less than 2300), the use of Poiseuille's law is valid, and the Piglet will not build pressure.

4.3 **Vented Nalgene® Bottle, Flow, and Pressure**

Drawing H-1-90493 (Ref. 21) shows the lid of the bottle has a 1/16-in. diameter hole. Per a telephone conversation with technical support at Nalgene®, the thickness of the lid of the bottle does not exceed 5 mm.

Length of 1/16-in dia. hole in bottle lid:

$$L_{bottle_lid_hole} := 5\text{mm} = 0.197\text{ in}$$

Diameter of bottle lid hole:

$$D_{bottle_lid_hole} := \frac{1}{16} \text{ in} = 0.063\text{ in}$$

Area of hole in the bottle lid:

$$A_{bottle_hole} := \frac{1}{4} \pi D_{bottle_lid_hole}^2 = 3.068 \times 10^{-3}\text{ in}^2$$

The equivalent diameter of the bottle's vent hole to have the same air flow rate as a NucFil filter at 1-in. WC differential pressure (equation from section 4.0):

$$D_{eq_Bottle} := D_{eq\left(L_{bottle_lid_hole}\right)} = 0.019\text{ in}$$

Ratio of actual vent hole to equivalent vent hole:

$$\text{ratio}_{Bottle} := \frac{D_{bottle_lid_hole}}{D_{eq_Bottle}} = 3.4$$

This shows the bottle is adequately vented to avoid pressure.

Check the Reynolds number to assure the use of Poiseuille's law was correct.

$$R_{e,Bottle} := \frac{V_{chir} \cdot D_{bottle_lid_hole}}{v} = 93.6$$

Clearly the flow is laminar (R_e less than 2300), the use of Poiseuille's law is valid, and the bottle will not build pressure.

4.4 **Vented Bag with a BOP Filter, Flow, and Pressure**

The vented bag that surrounds the bottle has a BOP filter. The filter has a stated flow rate of 4.0 L/min of air at 1-in. water column differential pressure uncorrected to STP conditions, see Appendix 7.5. This flow is about 20 times that of the NucFil filter and will easily vent any pressure coming from the bottle to the pig. No analysis is necessary.
5.0 RESULTS AND CONCLUSIONS

The hydrogen generation rate has been determined for both radiolysis and chemical reaction of uranium metal and water. The hydrogen generation rate was calculated for a sludge volume of 600 mL in the sample bottle. For a volume of 600 mL sludge, the maximum reported package temperature with solar insolation was used to show that the percent of hydrogen in the SWB (for two Super Pigs) and in a 55-gallon drum (for two Piglets) will be less than 5%.

The thermal heat load (from radioactive decay of the source and daughter isotopes and the exothermic heat of reaction of uranium metal with water) for two sample bottles in either the drum or SWB (shown to be a maximum of 0.43 W) is less than the assumed heat load used in either the SWB or Drum SARP to establish the maximum solar package temperature. With the resulting bounding temperature, the reaction rates in this report are conservative.

The following constraints are required:

For the SWB:

1. A minimum of two NucFil-019 filters or equivalent (H₂ diffusivity of 2.4 E–05 Mol/sec/mol fraction or greater for each filter) are required, or a minimum of three NucFil-013 filters or equivalent (H₂ diffusivity of 1.1 E–05 Mol/sec/mol fraction or greater for each filter) are required.

2. Two Super Pigs, each containing 600 mL of sludge, are allowed in the SWB.

3. The SWB is known (Ref. 8) to reach container temperatures no greater than 157 °F due to solar insolation. The H₂ gas generated at 157 °F was calculated and the volume percent of H₂ is 2.8% with two -019 filters, and 4.1% for three -013 filters.

4. This configuration requires no protection from solar insolation and may be transported in ambient conditions up to 115 °F.

For the 55-gallon drum with a single ¾-in. filter (-019 or equivalent):

1. One NucFil-019 or equivalent (H₂ diffusivity of 2.4 E–05 Mol/sec/mol fraction or greater) filter is required.

2. Two Piglets, each containing 600 mL of sludge, are allowed in the drum.

3. 55-gallon drums have been shown (Ref. 7) to reach no greater than 145 °F due to solar insolation. The H₂ gas generated at 145 °F was calculated and the volume percent of H₂ is 3.5% with one -019 filter.

4. This configuration requires no protection from solar insolation and may be transported in ambient conditions up to 115 °F.

Using a method of equivalent "holes," e.g. a hole with the same flow rate as the SWB or drum filter, it has been shown that each layer (bottle, bag and pig) in the containment boundary is designed with a vent path that exceeds that of the SWB or drum filter. No internal pressurization will occur.
6.0 REFERENCES

2. Drawing H-1-80792, Rev. 0, Shipping Container Sludge Sample Bottle Assy & Details (Vented Piglet).

3. Drawing H-1-89099, Rev. 1, Shipping Container Sludge Sample Bottle Vented Lid Assembly (Vented Piglet lid).

17. Drawing CQ5540-FLU0001, Rev. A4, (typical), 55 Gallon Open Head Drum, Skolnik Ind., Inc., Chicago, IL.
HNF-43821 Rev. 3

18. Sketch No. KBC-SK-437, Rev. 1, Contamination Control Bag, CHPRC Engineering Sketch.

22. Drawing H-1-91238, Rev. 0, Transportation Drum Shielded Container Rack.
7.0 APPENDIX

7.1 NucFil Product Specification Data Sheets (-013, and -019)

Product Specification Data Sheet

Model: NucFil®013
Specification #: NFT-013
Engineering Drawing #: 05130000

Date: 12/22/2003
Revision: 5

Usage:
Control VOC release and ventilation of hydrogen gas generated in 55 gal drums, containers, and Standard Waste Boxes containing TRU, Low Level, Hazardous or Mixed Wastes. Installed into ¾" flange of newly generated drum lids with 10-foot pounds of torque. Torque to 15-foot pounds on drums weighing more than 900 lbs.

Performance Characteristics:

<table>
<thead>
<tr>
<th>Performance Characteristic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Removal Efficiency</td>
<td>Tested at greater than 99.97% of 0.3µ to 0.5µ poly-dispersed (DOP) aerosol.</td>
</tr>
<tr>
<td>Resistance to Flow</td>
<td>Less than 1.0" W.C. DP @ 200 ml/min</td>
</tr>
<tr>
<td>Hydrogen Diffusivity</td>
<td>1.1 E-05 Mol/Sec/mol Frac</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Physical Characteristics:

<table>
<thead>
<tr>
<th>Physical Characteristics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Media</td>
<td>Carbon-bonded-Carbon</td>
</tr>
</tbody>
</table>
| Size: | Overall Height: 1.10"
Diameter: 1.64"
Thread Type: ¾" - 14 NPS
Profile: .358" |
| Material of Construction: | Type 304 Stainless steel |
| Type of Installation: | Threaded into ¾" pipe thread bung typical |
| Type of Seal | Neoprene gasket .125" thick, 50-70 durometer |

In conformance to the following Standards or Specifications:

ASME-NQA-1, DOT 7A, Trampac Rev.19 Appendix 2.5

Identification markings: (All items will be marked with the following information at a minimum)

Model Number: NucFil®013
Date of Manufacture: (mm/yy)
Unique Serial Number:
Product Specification Data Sheet

Model: NucFil® 019

Specification #: NFT-019

Engineering Drawing #: 05190000

Date: 03/18/04

Revision: 2

Usage:

Performance Characteristics:

- **Particle Removal Efficiency:** Tested at greater than 99.97% of 0.3μ to 0.5μ poly-dispersed (DOP) aerosol.
- **Resistance to Flow:** Less than 1.0" W.C. DP @ 200 ml/min
- **Hydrogen Diffusivity:** 2.4 E-05 Mol/sec/mol fraction

Notes:

Physical Characteristics:

- **Filter Media:** Carbon-bonded-carbon
- **Size:**
 - Overall Height: 0.72"
 - Diameter: 1.50" Hex
 - Profile: 0.4"
- **Material of Construction:** Type 304 Stainless steel
- **Type of Installation:** Threaded into ¾"-14 NPS
- **Type of Seal:** Neoprene gasket 0.125" thick 50-70 Durometer

In conformance to the following Standards or Specifications:

- ASME-NQA-1

Identification markings: (All items will be marked with the following information at a minimum)

- **Model Number:** NucFil® 019
- **Date of Manufacture:** (MM/YYYY)
- **Unique Serial Number:**

Engineering

(303) 584-9785

Quality

Fax (303) 584-9779

www.nuclearfilter.com
7.2 Piglets in the 55-Gallon Drum (Ref. 22)
7.3 Piglets Vented Lid (Ref. 3)
1 INCH VELCRO CLOSURE TO HAVE OFFSET ENDS TO ACT AS PEEL BACK TABS

SLIT BAG FOR VELCRO CLOSURE REINFORCE TOP OF SLIT TO PREVENT BAG FROM TEARING

NOTES
1. BAG MATERIAL SHALL BE 13 mil polyethylene
2. 1/2" DIAMETER POLYETHERE, INSIDE STITCHED
3. UNLESS OTHERWISE NOTED, ALL DIMENSIONS TO BE IN 1/2"
October 9, 2008

Mr. Joe Lechmann
LANCS Industries Inc.
12704 NE 124th St. #36
Kirkland, WA 98034

Subject: Test Report for Filter Diffusivity, Efficiency and Flow Rate of BOP 3CPU-1.5"-2PU Filters for LANC's PO # 19127

The 3CPU-1.5"-2PU filters manufactured by BOP Filter/Barriers LLC (BOP) and further identified by serial numbers recorded on the filters have been tested for flow and efficiency as described in this report. Separate tests performed at Jacksonville University tested the diffusivity of this filter design. All filters provided meet the requirements as stated below.

- Filters are manufactured by BOP and the filtering material is made from split (melt blown) polypropylene fibers.
- The flow rate of these filters is approximately 4.0 L/min of air at 1" of water column differential pressure uncorrected to STP conditions. This flow rate is approximately 100 times the required flow rate of 35 mL/min of air at standard temperature and pressure with a 1" water column pressure differential.
- The hydrogen diffusivity of this filter design has been tested at Jacksonville University and is 1.12 ± 0.04 x 10^{-4} mole/second/mole fraction that is approximately 10 times the requested value of 1.075 x 10^{-5} mole/second/mole fraction. A copy of this report is available upon request from BOP Filter/Barriers LLC.
- Filter efficiency is tested to be 99.98% or higher with a monodispersed DOP aerosol of 0.5micron particles in a penetrometer test. This test exceeds the requirements for filter efficiency of 99.97% with particles of 0.3 to 0.5 microns of DOP.
- The filters are welded to two 1.5" ID x 4.0" OD discs of 6 mil yellow polyester polyurethane to facilitate mounting into similar plastic membranes.
- Background

This test report documents the methodology for testing of BOP's 3CPU-1.5"-2PU filters to ensure they meet their specified design criteria and that they perform to, or exceed, the
requirements for a HDBF5X filter specification in Table 2.5-1 of Appendix 2.5 of the WIPP TRAMPAC document. The filter supplied has twice the diffusivity required for the HDBF5X filter.

Test Methodology

The system used for testing is a customized TDA-100, monodispersed aerosol penetrometer, produced by Air Techniques Inc. The test is performed in accordance with ASTM D 2986-71, Standard Practice for Evaluation of Air Asay Media by the Monodisperse DOP (Diocetyl Phthalate) Smoke Test. BOP maintains a Test Program in accordance with SNT-TC-1A that is administered by our ASNT NDT Level III Certified Tester, Paul Pinson.

Test Procedure

BOP's detailed written procedure utilizes calibrated instruments for all data that is reported in our test reports. A constant flow rate of 4.0L/min is set as the controlling parameter for these tests. This is approximately equivalent to 1" of water column differential pressure.

Test Data

Original test data is recorded in BOP's hardbound test data logbooks that are retained as Quality Records in our files. Data are recorded in chronological order by date and by the unique serial number on each filter. Data recorded includes the differential pressure from the delta pressure meter, flow from the rotometer setting and penetration from our penetration meter.

3CPU-1.5-2PU Filters Delivery Schedule

<table>
<thead>
<tr>
<th>Date Shipped to LANCS Industries Inc</th>
<th>Quantity Shipped</th>
<th>Filter Serial Numbers</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/02/08</td>
<td>100</td>
<td>75101 to 75200</td>
<td>8/22/08</td>
</tr>
<tr>
<td>10/02/08</td>
<td>400</td>
<td>75201 to 75600</td>
<td>8/27/08</td>
</tr>
<tr>
<td>10/09/08</td>
<td>100</td>
<td>75601 to 75700</td>
<td>10/07/08</td>
</tr>
<tr>
<td>10/09/08</td>
<td>50</td>
<td>75701 to 75750</td>
<td>10/09/08</td>
</tr>
</tbody>
</table>

I certify that the S/N filters identified above have been tested as described in this report and that they have a minimum efficiency of 99.98% with a 0.3micron DOP Smoke Test.

Certified by: [Signature] Date: 10/09/2008

Paul Pinson ASNT NDT Level III Certificate Number 148298
7.6 Sample Bottle (2 pages total)
<table>
<thead>
<tr>
<th>Nominal Capacity</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Approx. Brim Cap, ml</th>
<th>Material</th>
<th>I.D. Neck, mm/in.</th>
<th>Hgt. w/ Closure, mm/in.</th>
<th>Hgt. w/o Closure, mm/in.</th>
<th>O.D. Bottle, mm/in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 L (1 gal)</td>
<td>Bottle, Heavy Duty</td>
<td>2126-4000</td>
<td>4,100</td>
<td>PP</td>
<td>65/2 9/16</td>
<td>338/13 5/16</td>
<td>327/12 7/8</td>
<td>155/6 1/6</td>
</tr>
</tbody>
</table>

HNF-43821 Rev. 3

7.7 Sample Bottle Source Term and H₂ Generation from Radiolysis

Radcalc 4.1 was used for this report. The sample bottle source term was determined as follows:

1) The sludge source data is taken from Ref. 9, Table 2-2a Sludge Radionuclide Inventories (Decayed to 5-31-1998). The data was decayed to 1/1/2010, including January 1, the duration is 4234 days. The data was also decayed a nominal 15 days. The worst case H₂ generation resulting from these two results was used in this report.

2) The volume in the 4.1 L bottle that is not sludge is conservatively assumed to be KE canister water, from Ref. 12, Table 4-1 Nominal Inventory for K Basin Water Associated with Sludge, i.e., ¹³⁷Cs concentration an order of magnitude greater than that in KW canister water. The "nominal" water source term from this table is used for the design basis inventory.

An Excel spreadsheet was used to determine the specific inventory for an arbitrary volume of sludge with the remaining volume water, as discussed above. The results from the spreadsheet were used as inputs for Radcalc 4.1 which resulted in the H₂ generation results from radiolysis used in this report.

The source inventory for 600 mL of sludge (with the remaining volume water) is shown below in Table 7.7.1. The Table 7.7.1 column titled Design Total is the combinations of the water and Design Basis sludge. It is these totals that are input into Radcalc 4.1.

Section 7.7.1 and 7.7.2 contains the Design Basis Radcalc 4.1 output for the two decay times.

The Radcalc 4.1 program was obtained from https://www.radcalc.energy.gov/dnnradweb, and the author and checker of this report are authorized and registered Radcalc users. As required by the Radcalc authorization instructions, the "download" menu was checked for Problem Report/Change Request (PR/CR) information. Two PR/CR reports were found as of the date of this report: PR/CR-68 and PR/CR-64. Both PR/CR's were read and found to not impact the Radcalc results used in this report. The Radcalc installation verification report, showing "Verification Status: Passed" is on file in the Transportation Safety organization.

34
Table 7.7.1 Source Inventory for 600 mL Sludge (Radcalc 4.1 Input)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Design Sludge</th>
<th>Design Water</th>
<th>Design Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>6.30E-03</td>
<td>5.50E-05</td>
<td>6.35E-03</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2.40E+00</td>
<td>5.81E-02</td>
<td>2.46E+00</td>
</tr>
<tr>
<td>Y-90</td>
<td>2.40E+00</td>
<td>5.81E-02</td>
<td>2.46E+00</td>
</tr>
<tr>
<td>Tc-99</td>
<td>9.30E-04</td>
<td></td>
<td>9.30E-04</td>
</tr>
<tr>
<td>Cs-134</td>
<td>0.00E+00</td>
<td>1.49E-04</td>
<td>1.49E-04</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.44E+00</td>
<td>4.62E-02</td>
<td>1.49E+00</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>1.36E+00</td>
<td>4.37E-02</td>
<td>1.40E+00</td>
</tr>
<tr>
<td>Eu-152</td>
<td>0.00E+00</td>
<td>2.06E-04</td>
<td>2.06E-04</td>
</tr>
<tr>
<td>Eu-154</td>
<td>1.91E-02</td>
<td>1.44E-04</td>
<td>1.93E-02</td>
</tr>
<tr>
<td>Eu-155</td>
<td>9.06E-03</td>
<td>5.85E-04</td>
<td>9.64E-03</td>
</tr>
<tr>
<td>U-234</td>
<td>3.01E-04</td>
<td></td>
<td>3.01E-04</td>
</tr>
<tr>
<td>U-235</td>
<td>1.03E-05</td>
<td></td>
<td>1.03E-05</td>
</tr>
<tr>
<td>U-236</td>
<td>3.40E-05</td>
<td></td>
<td>3.40E-05</td>
</tr>
<tr>
<td>Np-237</td>
<td>1.32E-05</td>
<td>3.22E-06</td>
<td>1.64E-05</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.35E-02</td>
<td>7.32E-06</td>
<td>2.35E-02</td>
</tr>
<tr>
<td>Pu-239</td>
<td>8.40E-02</td>
<td>7.32E-06</td>
<td>8.40E-02</td>
</tr>
<tr>
<td>Pu-240</td>
<td>4.59E-02</td>
<td>7.32E-06</td>
<td>4.59E-02</td>
</tr>
<tr>
<td>Pu-241</td>
<td>2.63E+00</td>
<td></td>
<td>2.63E+00</td>
</tr>
<tr>
<td>Pu-242</td>
<td>2.07E-05</td>
<td></td>
<td>2.07E-05</td>
</tr>
<tr>
<td>Am-241</td>
<td>1.12E-01</td>
<td>5.29E-04</td>
<td>1.13E-01</td>
</tr>
</tbody>
</table>

Total 1.05E+01 2.08E-01 1.07E+01

0.6-L 50/50 KE/KW Canister Sludge, Table 2-2a, HNF-41051 Rev. 5
3.5-L KE Canister Water, Table 4-1, HNF-SD-TI-009, Vol 2, Rev 4
4.1-L Size of the poly bottle for sludge
7.7.1 600 mL Design Basis Radcalc 4.1 Results Decayed to 1/1/2010

Radcalc 4.1: D:\Hanford\2009\H2Genrad files\original_0_6L_Design_4234day_rev.rad

Performed By: Don Riley
Checked By: Alvia Bridges

Comments:
0.6L Sludge, Design Basis
Sludge: HNF-41051 Rev. 5, Table 2-2a Settler Source Term (50/50 KEKW)
Water: KE Canister Water, Table 4-1, HNF-SD-SNF-TI-009, Vol 2, Rev 4

Initial Source Data:
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Ci</th>
<th>Gm</th>
<th>TBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>6.350E-03</td>
<td>5.611E-06</td>
<td>2.350E-04</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2.460E+00</td>
<td>1.781E-02</td>
<td>9.102E-02</td>
</tr>
<tr>
<td>Y-90</td>
<td>2.460E+00</td>
<td>4.524E-06</td>
<td>9.102E-02</td>
</tr>
<tr>
<td>Tc-99</td>
<td>9.300E-04</td>
<td>5.506E-02</td>
<td>3.441E-05</td>
</tr>
<tr>
<td>Cs-134</td>
<td>1.490E-04</td>
<td>1.153E-07</td>
<td>5.513E-06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.490E+00</td>
<td>1.714E-02</td>
<td>5.513E-06</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>1.400E+00</td>
<td>2.601E-06</td>
<td>5.180E-02</td>
</tr>
<tr>
<td>Eu-152</td>
<td>2.060E-04</td>
<td>1.184E-06</td>
<td>7.622E-06</td>
</tr>
<tr>
<td>Eu-154</td>
<td>1.930E-02</td>
<td>7.140E-05</td>
<td>7.141E-04</td>
</tr>
<tr>
<td>U-234</td>
<td>3.010E-04</td>
<td>4.842E-02</td>
<td>1.114E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>1.030E-05</td>
<td>4.786E+00</td>
<td>3.811E-07</td>
</tr>
<tr>
<td>U-236</td>
<td>3.400E-05</td>
<td>5.320E-01</td>
<td>1.258E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>2.100E-04</td>
<td>6.248E+02</td>
<td>7.770E-06</td>
</tr>
<tr>
<td>Np-237</td>
<td>1.640E-05</td>
<td>2.327E-02</td>
<td>6.068E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.350E-02</td>
<td>1.372E-03</td>
<td>8.695E-04</td>
</tr>
<tr>
<td>Pu-239</td>
<td>8.400E-02</td>
<td>1.354E+00</td>
<td>3.108E-03</td>
</tr>
<tr>
<td>Pu-240</td>
<td>4.590E-02</td>
<td>2.023E-01</td>
<td>1.698E-03</td>
</tr>
<tr>
<td>Pu-241</td>
<td>2.630E-00</td>
<td>2.541E-02</td>
<td>9.731E-02</td>
</tr>
<tr>
<td>Pu-242</td>
<td>2.070E-05</td>
<td>5.235E-03</td>
<td>7.658E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>1.130E-01</td>
<td>3.298E-02</td>
<td>4.181E-03</td>
</tr>
</tbody>
</table>

Total Activity: 1.074E+01

*Radionuclides with an A1/A2 fraction of less than 0.001 will not be shown in the output.

Container Data:
Container Void Volume:	0.0542 m³
Container Mass:	5806 kg
Mass of solid beryllium, lead, graphite, and hydrogenous material enriched with deuterium:	0 kg
Gross Mass:	5816 kg

Waste Data:
Waste Form:	Normal
Waste State:	Solid
Waste Volume:	0.0041 m³
Waste Mass:	10.1 kg
Mass of solid lead:	0 kg
Mass of solid beryllium, graphite, and hydrogenous material enriched with deuterium:	0 kg
Waste Void Volume:	0 m³

Decay Time Data:
| Time to decay source before sealing: | 4234 day |
| Time container is sealed: | 0 day |

Gamma Absorption Model:
| Gamma Abs Model: | 100% Gamma Absorption |
G Value Data:

<table>
<thead>
<tr>
<th>G Alpha</th>
<th>G Beta</th>
<th>G Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.072</td>
<td>1.64</td>
</tr>
</tbody>
</table>

G values entered by the user.

Radioactive Decay Results

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Ci</th>
<th>Gm</th>
<th>TBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>1.383E-03</td>
<td>1.222E-06</td>
<td>5.116E-05</td>
</tr>
<tr>
<td>Sr-90</td>
<td>1.861E+00</td>
<td>1.347E-02</td>
<td>6.885E-02</td>
</tr>
<tr>
<td>Y-90</td>
<td>1.881E+00</td>
<td>3.423E-06</td>
<td>6.887E-02</td>
</tr>
<tr>
<td>Tc-99</td>
<td>9.300E-04</td>
<td>5.506E-02</td>
<td>3.441E-05</td>
</tr>
<tr>
<td>Xe-134</td>
<td>8.220E-26</td>
<td>3.387E-13</td>
<td>3.041E-27</td>
</tr>
<tr>
<td>Cs-134</td>
<td>3.043E-06</td>
<td>2.354E-09</td>
<td>1.126E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.140E+00</td>
<td>1.312E-02</td>
<td>4.219E-02</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>1.076E+00</td>
<td>2.000E-09</td>
<td>3.983E-02</td>
</tr>
<tr>
<td>Nd-144</td>
<td>2.179E-48</td>
<td>2.008E-36</td>
<td>8.062E-50</td>
</tr>
<tr>
<td>Sm-148</td>
<td>1.778E-33</td>
<td>5.887E-21</td>
<td>6.580E-35</td>
</tr>
<tr>
<td>Eu-152</td>
<td>1.137E-04</td>
<td>6.536E-07</td>
<td>4.208E-06</td>
</tr>
<tr>
<td>Eu-154</td>
<td>7.576E-03</td>
<td>2.803E-05</td>
<td>2.803E-04</td>
</tr>
<tr>
<td>Eu-155</td>
<td>1.778E-03</td>
<td>3.662E-06</td>
<td>6.578E-05</td>
</tr>
<tr>
<td>Gd-152</td>
<td>3.224E-18</td>
<td>2.008E-36</td>
<td>8.062E-50</td>
</tr>
<tr>
<td>Hg-152</td>
<td>1.686E-13</td>
<td>1.347E-02</td>
<td>6.885E-02</td>
</tr>
<tr>
<td>Tl-206</td>
<td>1.182E-17</td>
<td>5.442E-26</td>
<td>4.374E-19</td>
</tr>
<tr>
<td>Tl-207</td>
<td>4.044E-10</td>
<td>2.123E-18</td>
<td>1.496E-11</td>
</tr>
<tr>
<td>Tl-208</td>
<td>2.157E-15</td>
<td>7.285E-24</td>
<td>7.982E-17</td>
</tr>
<tr>
<td>Tl-209</td>
<td>9.524E-15</td>
<td>2.392E-23</td>
<td>3.524E-16</td>
</tr>
<tr>
<td>Pb-209</td>
<td>4.409E-13</td>
<td>9.565E-20</td>
<td>1.631E-14</td>
</tr>
<tr>
<td>Pb-210</td>
<td>8.873E-12</td>
<td>1.155E-13</td>
<td>3.283E-13</td>
</tr>
<tr>
<td>Pb-211</td>
<td>4.055E-10</td>
<td>1.643E-17</td>
<td>1.500E-11</td>
</tr>
<tr>
<td>Pb-212</td>
<td>6.004E-15</td>
<td>4.321E-21</td>
<td>2.221E-16</td>
</tr>
<tr>
<td>Pb-214</td>
<td>8.026E-11</td>
<td>2.448E-18</td>
<td>2.969E-12</td>
</tr>
<tr>
<td>Bi-209</td>
<td>6.093E-32</td>
<td>6.767E-16</td>
<td>2.254E-33</td>
</tr>
<tr>
<td>Bi-210</td>
<td>8.829E-12</td>
<td>7.116E-17</td>
<td>3.267E-13</td>
</tr>
<tr>
<td>Bi-211</td>
<td>4.055E-10</td>
<td>9.874E-19</td>
<td>1.500E-11</td>
</tr>
<tr>
<td>Bi-212</td>
<td>6.004E-15</td>
<td>4.098E-22</td>
<td>2.221E-16</td>
</tr>
<tr>
<td>Bi-213</td>
<td>4.409E-13</td>
<td>2.277E-20</td>
<td>1.631E-14</td>
</tr>
<tr>
<td>Bi-214</td>
<td>8.026E-11</td>
<td>1.818E-18</td>
<td>2.970E-12</td>
</tr>
<tr>
<td>Bi-215</td>
<td>3.320E-16</td>
<td>2.810E-24</td>
<td>1.229E-17</td>
</tr>
<tr>
<td>Po-210</td>
<td>7.716E-12</td>
<td>1.717E-15</td>
<td>2.856E-13</td>
</tr>
<tr>
<td>Po-211</td>
<td>1.107E-12</td>
<td>1.608E-23</td>
<td>4.096E-14</td>
</tr>
<tr>
<td>Po-212</td>
<td>3.846E-15</td>
<td>2.154E-32</td>
<td>1.423E-16</td>
</tr>
<tr>
<td>Po-213</td>
<td>4.315E-13</td>
<td>3.421E-29</td>
<td>1.596E-14</td>
</tr>
<tr>
<td>Po-214</td>
<td>8.024E-11</td>
<td>2.492E-25</td>
<td>2.969E-12</td>
</tr>
<tr>
<td>Po-215</td>
<td>4.055E-10</td>
<td>1.376E-23</td>
<td>1.500E-11</td>
</tr>
<tr>
<td>Po-216</td>
<td>6.006E-15</td>
<td>1.725E-26</td>
<td>2.222E-16</td>
</tr>
<tr>
<td>Po-218</td>
<td>8.026E-11</td>
<td>2.883E-19</td>
<td>2.970E-12</td>
</tr>
<tr>
<td>At-215</td>
<td>1.622E-15</td>
<td>3.091E-30</td>
<td>6.002E-17</td>
</tr>
<tr>
<td>At-217</td>
<td>4.410E-13</td>
<td>2.740E-25</td>
<td>1.632E-14</td>
</tr>
<tr>
<td>At-218</td>
<td>1.525E-14</td>
<td>4.240E-25</td>
<td>5.642E-16</td>
</tr>
<tr>
<td>At-219</td>
<td>3.423E-16</td>
<td>3.588E-25</td>
<td>1.267E-17</td>
</tr>
<tr>
<td>Rn-217</td>
<td>5.292E-17</td>
<td>5.497E-31</td>
<td>1.958E-18</td>
</tr>
<tr>
<td>Rn-218</td>
<td>1.525E-17</td>
<td>1.031E-29</td>
<td>5.642E-19</td>
</tr>
<tr>
<td>Rn-219</td>
<td>4.055E-10</td>
<td>3.118E-20</td>
<td>1.500E-11</td>
</tr>
<tr>
<td>Rn-220</td>
<td>6.006E-15</td>
<td>6.536E-24</td>
<td>2.222E-16</td>
</tr>
<tr>
<td>Rn-222</td>
<td>8.026E-11</td>
<td>5.217E-16</td>
<td>2.970E-12</td>
</tr>
<tr>
<td>Fr-221</td>
<td>4.410E-13</td>
<td>2.540E-21</td>
<td>1.632E-14</td>
</tr>
<tr>
<td>Fr-223</td>
<td>5.705E-12</td>
<td>1.475E-19</td>
<td>2.111E-13</td>
</tr>
<tr>
<td>Ra-223</td>
<td>4.055E-10</td>
<td>7.917E-15</td>
<td>1.500E-11</td>
</tr>
<tr>
<td>Ra-224</td>
<td>6.006E-15</td>
<td>3.751E-20</td>
<td>2.222E-16</td>
</tr>
<tr>
<td>Ra-225</td>
<td>4.441E-13</td>
<td>1.133E-17</td>
<td>1.643E-14</td>
</tr>
<tr>
<td>Ra-226</td>
<td>8.047E-11</td>
<td>8.140E-11</td>
<td>2.977E-12</td>
</tr>
<tr>
<td>Ra-228</td>
<td>8.971E-15</td>
<td>3.290E-17</td>
<td>3.319E-16</td>
</tr>
<tr>
<td>Ac-225</td>
<td>4.410E-13</td>
<td>7.600E-18</td>
<td>1.632E-14</td>
</tr>
</tbody>
</table>
Regulatory Requirements Warning

Radcalc utilizes numerically based criteria to classify packages against the regulations. Many regulations also include subjective criteria that Radcalc does not consider. The user must check to ensure that all requirements in the regulations are met.

DOT Classification Results

* This package is not exempt from 49 CFR Subchapter C.

<table>
<thead>
<tr>
<th>Radioactive Determination:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive:</td>
<td>Yes</td>
<td>(ACEMs and ALECs > 1.0)</td>
</tr>
<tr>
<td>ACEM Limit Fraction:</td>
<td>1671000</td>
<td>ACEMs (Number of ACEMs)</td>
</tr>
<tr>
<td>ALEC Limit Fraction:</td>
<td>14810000</td>
<td>ALECs (Number of ALECs)</td>
</tr>
</tbody>
</table>

* Effective A2s for Mixture: 1.455E+10 Bq

<table>
<thead>
<tr>
<th>Type Determination:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>B</td>
</tr>
<tr>
<td>A2 Limit Fraction:</td>
<td>12.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limited Quantity Determination:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited Quantity:</td>
<td>No</td>
</tr>
<tr>
<td>Activity:</td>
<td>12.45</td>
</tr>
<tr>
<td></td>
<td>7.836</td>
</tr>
<tr>
<td></td>
<td>0.2899</td>
</tr>
</tbody>
</table>

| Fissile: | Yes |
| Fissile Excepted: | Yes (b) |

<table>
<thead>
<tr>
<th>LSA Determination:</th>
<th></th>
</tr>
</thead>
</table>
HNF-43821 Rev. 3

LSA-I: No
(Fissile excepted, ACEMs > 30 x rad limits)

LSA-II: No
(A2s/gm > 0.0001)

LSA-III: Yes
(A2s/gm <= 0.002)

Specific Activity:
- A2/gm: 0.001233
- Ci/gm: 0.0007759

HRCQ Determination:
- HRCQ: No
(A2s <= 3000, Activity <= 1000 TBq)

Fissile Determination:
- Fissile: Yes
(Contains fissile isotopes per 49 CFR 173.403)

Fissile Excepted Determination:
- Fissile Excepted: Yes (b)
(solid non-fissile > = 1.227E+03 grams)

Fissile Mass: 6.135 gm

Container beryllium, lead, graphite, and hydrogenous material enriched with deuterium:
- Container Mass: 5806000 gm
- Waste lead: 0 gm

Waste beryllium, graphite, and hydrogenous material enriched with deuterium:
- Waste Mass: 10100 gm

Solid Non-Fissile Mass: 5816000 gm

Total Uranium Mass: 630.1 gm

U-233 Mass: 8.633E-08 gm

U-235 Mass: 4.767 gm

Uranium Enrichment: 0.7564 %

Total Plutonium Mass: 1.577 gm

Pu-239 Mass: 1.354 gm

Pu-241 Mass: 0.01451 gm

Reportable Quantity Determination:
- Reportable Quantity: Yes
(RQs >= 1.0)

RQ Limit Fraction: 52.53 RQs
(Number of RQs)

Shipping Papers and Labels:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Number of A2s</th>
<th>Fraction of A2s</th>
<th>Cumulative A2s</th>
<th>Cumulative Fraction of A2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Am-241</td>
<td>5.473</td>
<td>0.4394</td>
<td>5.473</td>
<td>0.4394</td>
</tr>
<tr>
<td>+ Pu-239</td>
<td>3.107</td>
<td>0.2495</td>
<td>8.58</td>
<td>0.6889</td>
</tr>
<tr>
<td>+ Pu-240</td>
<td>1.696</td>
<td>0.1362</td>
<td>10.28</td>
<td>0.8251</td>
</tr>
<tr>
<td>+ Pu-241</td>
<td>0.9257</td>
<td>0.07433</td>
<td>11.20</td>
<td>0.8994</td>
</tr>
<tr>
<td>+ Pu-243</td>
<td>0.7734</td>
<td>0.0637</td>
<td>12.28</td>
<td>0.9632</td>
</tr>
<tr>
<td>Sr-90</td>
<td>0.2295</td>
<td>0.01843</td>
<td>12.22</td>
<td>0.9816</td>
</tr>
<tr>
<td>U-235m</td>
<td>0.1553</td>
<td>0.01247</td>
<td>12.38</td>
<td>0.994</td>
</tr>
<tr>
<td>Cs-137</td>
<td>0.07032</td>
<td>0.005646</td>
<td>12.45</td>
<td>0.9997</td>
</tr>
</tbody>
</table>

+ Contains 95% of the total A2s and must be included per 49 CFR 173.433.
* Radionuclides comprising less than 0.1% of the total A2s are not shown in the list.

DOE Classification Results

* DOE classification calculations are made at the end of the user-specified decay time.

DOE-STD-1027 Category Determination:
- Category: < Cat 3
(Cat3s <= 1.0)

<table>
<thead>
<tr>
<th>Cat 2 Limit Fraction</th>
<th>Cat 3 Limit Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005979</td>
<td>0.7525</td>
</tr>
</tbody>
</table>

* The DOE-STD-1027 category determination is based on dose-related limits. The user must apply any criticality-related limits separately.

Dose-Equivalent Curies:
- ICRP-72 DE-Ci: 0.3024
FGR-11 DE-Ci: 0.3373

TRU Waste Determination:
TRU Waste: Yes (TRU activity > 100 nCi/gm)
TRU Activity: 29630 nCi/g

WIPP Quantities:
FGE Value: 4.457
PE-Ci Value: 0.3297

==
NRC Classification Results==
* NRC classification calculations are made at the end of the user-specified decay time.

NRC Container Category:
Container Category: III
LSA-I: No
LSA-II: No
LSA-III: Yes
Total Activity: 7.836 Ci
A2 Limit Fraction: 12.45 A2s

==
Hydrogen/Helium Gas Results==
* Hydrogen gas calculations are made at the end of the user-specified seal time.

Hydrogen Gas:
H2 Concentration: 0 %
H2 Moles: 0 moles
H2 Volume: 0 cm³ (0 C, 101.325 kPa)
H2 Rate When Sealed: 0.08154 cm³/hr (0 C, 101.325 kPa)
H2 Rate When Opened: 0.08154 cm³/hr (0 C, 101.325 kPa)

Helium Gas:
He Concentration: 0 %
He Moles: 0 moles
He Volume: 0 cm³ (0 C, 101.325 kPa)
He Rate When Sealed: 1.486E-06 cm³/hr (0 C, 101.325 kPa)
He Rate When Opened: 1.486E-06 cm³/hr (0 C, 101.325 kPa)

Pressure When Opened:
Partial Pressure (H2): 0 kPa
Partial Pressure (He): 0 kPa
Partial Pressure (O2): 0 kPa (if H2O present in waste)
Total Pressure (H2 + He + Air): 101.3 kPa
Total Pressure (H2 + He + O2 + Air): 101.3 kPa (if H2O present in waste)
Input Information

Comments:
0.6L Sludge, Design Basis
Decayed from 5/31/1998 by 15 days.
Sludge: HNF-41051 Rev. 5, Table 2-2a Settler Source Term (50/50 KE/KW)
Water: KE Canister Water, Table 4-1, HNF-SD-SNF-TI-009, Vol 2, Rev 4

Initial Source Data:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Cm</th>
<th>Gm</th>
<th>TBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>6.350E-03</td>
<td>5.611E-06</td>
<td>2.350E-04</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2.460E+00</td>
<td>1.781E-02</td>
<td>9.102E-02</td>
</tr>
<tr>
<td>Y-90</td>
<td>2.460E+00</td>
<td>4.524E-06</td>
<td>9.102E-02</td>
</tr>
<tr>
<td>Tc-99</td>
<td>9.300E-04</td>
<td>5.506E-02</td>
<td>3.441E-05</td>
</tr>
<tr>
<td>Cs-134</td>
<td>1.490E-04</td>
<td>1.153E-07</td>
<td>5.513E-06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.490E-00</td>
<td>1.714E-02</td>
<td>5.513E-02</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>1.400E+00</td>
<td>2.601E-09</td>
<td>5.180E-02</td>
</tr>
<tr>
<td>Eu-152</td>
<td>2.060E-04</td>
<td>1.184E-06</td>
<td>7.622E-06</td>
</tr>
<tr>
<td>Eu-154</td>
<td>1.930E-02</td>
<td>7.140E-05</td>
<td>7.141E-04</td>
</tr>
<tr>
<td>U-234</td>
<td>3.010E-04</td>
<td>4.842E-02</td>
<td>1.114E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>1.030E-05</td>
<td>4.766E+00</td>
<td>3.811E-07</td>
</tr>
<tr>
<td>U-236</td>
<td>3.400E-05</td>
<td>5.320E-01</td>
<td>1.258E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>2.100E-04</td>
<td>6.248E+02</td>
<td>7.778E-06</td>
</tr>
<tr>
<td>Np-237</td>
<td>1.640E-05</td>
<td>2.327E-02</td>
<td>6.068E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.350E-02</td>
<td>1.372E-03</td>
<td>8.695E-04</td>
</tr>
<tr>
<td>Pu-239</td>
<td>8.400E-02</td>
<td>1.354E+00</td>
<td>3.108E-03</td>
</tr>
<tr>
<td>Pu-240</td>
<td>4.590E-02</td>
<td>2.023E-01</td>
<td>1.698E-03</td>
</tr>
<tr>
<td>Pu-241</td>
<td>2.630E+00</td>
<td>2.541E-02</td>
<td>9.731E-02</td>
</tr>
<tr>
<td>Pu-242</td>
<td>2.070E-05</td>
<td>5.235E-03</td>
<td>7.659E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>1.130E-01</td>
<td>3.298E-02</td>
<td>4.181E-03</td>
</tr>
</tbody>
</table>

Total Activity: 1.074E+01

Radionuclides with an A1/A2 fraction of less than 0.001 will not be shown in the output.

Container Data:

- Container Void Volume: 0.0542 m³
- Container Mass: 5806 kg
- Mass of solid beryllium, lead, graphite, and hydrogenous material enriched with deuterium: 0 kg

Gross Mass: 5816 kg

Waste Data:

- Waste Form: Normal
- Waste State: Solid
- Waste Volume: 0.0041 m³
- Waste Mass: 10.1 kg
- Mass of solid lead: 0 kg
- Mass of solid beryllium, graphite, and hydrogenous material enriched with deuterium: 0 kg
- Waste Void Volume: 0 m³

Decay Time Data:

- Time to decay source before sealing: 15 day
- Time container is sealed: 0 day

Gamma Absorption Model:

- Gamma Abs Model: 100% Gamma Absorption
G Value Data:
- **G Alpha**: 0.24
- **G Beta**: 0.072
- **G Gamma**: 1.64

G values entered by the user.

Radioactive Decay Results

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Ci</th>
<th>Gm</th>
<th>TBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>6.316E-03</td>
<td>5.581E-06</td>
<td>2.337E-04</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2.458E+00</td>
<td>1.779E-02</td>
<td>9.093E-02</td>
</tr>
<tr>
<td>Y-90</td>
<td>2.458E+00</td>
<td>4.521E-06</td>
<td>9.095E-02</td>
</tr>
<tr>
<td>Tc-99</td>
<td>9.300E-04</td>
<td>5.506E-02</td>
<td>3.441E-05</td>
</tr>
<tr>
<td>Xe-134</td>
<td>1.149E+27</td>
<td>4.733E-15</td>
<td>4.251E-29</td>
</tr>
<tr>
<td>Cs-134</td>
<td>1.470E-04</td>
<td>1.137E-07</td>
<td>5.438E-06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.489E+00</td>
<td>1.712E-02</td>
<td>5.508E-02</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>1.405E+00</td>
<td>2.611E-09</td>
<td>5.199E-02</td>
</tr>
<tr>
<td>Sm-148</td>
<td>2.693E-38</td>
<td>8.915E-26</td>
<td>9.965E-40</td>
</tr>
<tr>
<td>Eu-152</td>
<td>2.056E-04</td>
<td>1.181E-06</td>
<td>7.606E-06</td>
</tr>
<tr>
<td>Eu-154</td>
<td>1.924E-02</td>
<td>7.117E-05</td>
<td>7.117E-04</td>
</tr>
<tr>
<td>Eu-155</td>
<td>9.582E-03</td>
<td>1.974E-05</td>
<td>3.546E-04</td>
</tr>
<tr>
<td>Gd-152</td>
<td>1.513E-20</td>
<td>6.942E-10</td>
<td>5.599E-22</td>
</tr>
<tr>
<td>Hg-206</td>
<td>3.482E-27</td>
<td>3.106E-35</td>
<td>1.286E-28</td>
</tr>
<tr>
<td>TI-206</td>
<td>8.126E-26</td>
<td>3.741E-34</td>
<td>3.007E-27</td>
</tr>
<tr>
<td>TI-207</td>
<td>1.425E-16</td>
<td>7.482E-25</td>
<td>5.272E-18</td>
</tr>
<tr>
<td>TI-208</td>
<td>1.037E-22</td>
<td>3.503E-31</td>
<td>3.838E-24</td>
</tr>
<tr>
<td>TI-209</td>
<td>4.017E-22</td>
<td>9.822E-31</td>
<td>1.486E-23</td>
</tr>
<tr>
<td>TI-210</td>
<td>1.088E-19</td>
<td>1.580E-28</td>
<td>4.027E-21</td>
</tr>
<tr>
<td>Pb-210</td>
<td>1.836E-19</td>
<td>2.390E-21</td>
<td>6.795E-21</td>
</tr>
<tr>
<td>Pb-211</td>
<td>1.431E-16</td>
<td>5.798E-24</td>
<td>5.296E-18</td>
</tr>
<tr>
<td>Pb-212</td>
<td>2.934E-22</td>
<td>2.112E-28</td>
<td>1.086E-23</td>
</tr>
<tr>
<td>Pb-214</td>
<td>5.201E-16</td>
<td>5.860E-23</td>
<td>1.924E-17</td>
</tr>
<tr>
<td>Bi-209</td>
<td>4.523E-42</td>
<td>5.024E-26</td>
<td>1.674E-43</td>
</tr>
<tr>
<td>Bi-210</td>
<td>5.900E-20</td>
<td>4.755E-25</td>
<td>2.183E-21</td>
</tr>
<tr>
<td>Bi-211</td>
<td>1.431E-16</td>
<td>3.483E-25</td>
<td>5.293E-18</td>
</tr>
<tr>
<td>Bi-212</td>
<td>2.899E-22</td>
<td>1.972E-29</td>
<td>1.069E-23</td>
</tr>
<tr>
<td>Bi-213</td>
<td>1.861E-20</td>
<td>9.610E-28</td>
<td>6.885E-22</td>
</tr>
<tr>
<td>Bi-214</td>
<td>5.184E-16</td>
<td>1.174E-23</td>
<td>1.918E-17</td>
</tr>
<tr>
<td>Bi-215</td>
<td>3.918E-21</td>
<td>3.230E-29</td>
<td>1.438E-22</td>
</tr>
<tr>
<td>Po-210</td>
<td>8.017E-22</td>
<td>1.784E-25</td>
<td>2.966E-23</td>
</tr>
<tr>
<td>Po-211</td>
<td>3.805E-19</td>
<td>3.769E-30</td>
<td>1.445E-20</td>
</tr>
<tr>
<td>Po-213</td>
<td>1.821E-20</td>
<td>1.444E-36</td>
<td>6.738E-22</td>
</tr>
<tr>
<td>Po-214</td>
<td>5.183E-16</td>
<td>1.609E-30</td>
<td>1.918E-17</td>
</tr>
<tr>
<td>Po-215</td>
<td>1.445E-16</td>
<td>4.902E-30</td>
<td>5.347E-18</td>
</tr>
<tr>
<td>Po-216</td>
<td>3.416E-22</td>
<td>9.810E-34</td>
<td>1.264E-23</td>
</tr>
<tr>
<td>Po-218</td>
<td>5.225E-16</td>
<td>1.877E-24</td>
<td>1.933E-17</td>
</tr>
<tr>
<td>At-215</td>
<td>5.780E-22</td>
<td>1.102E-36</td>
<td>2.193E-23</td>
</tr>
<tr>
<td>At-217</td>
<td>1.888E-20</td>
<td>1.173E-32</td>
<td>6.985E-22</td>
</tr>
<tr>
<td>At-218</td>
<td>9.926E-20</td>
<td>2.578E-30</td>
<td>3.673E-21</td>
</tr>
<tr>
<td>At-219</td>
<td>3.940E-21</td>
<td>4.130E-30</td>
<td>1.458E-22</td>
</tr>
<tr>
<td>Rn-217</td>
<td>2.265E-24</td>
<td>2.353E-38</td>
<td>8.381E-26</td>
</tr>
<tr>
<td>Rn-219</td>
<td>1.445E-16</td>
<td>1.111E-26</td>
<td>5.347E-18</td>
</tr>
<tr>
<td>Rn-220</td>
<td>3.416E-22</td>
<td>3.717E-31</td>
<td>1.264E-23</td>
</tr>
<tr>
<td>Rn-222</td>
<td>5.228E-16</td>
<td>3.399E-21</td>
<td>1.934E-17</td>
</tr>
<tr>
<td>Fr-221</td>
<td>1.888E-20</td>
<td>1.087E-28</td>
<td>6.985E-22</td>
</tr>
<tr>
<td>Fr-223</td>
<td>6.568E-17</td>
<td>1.698E-24</td>
<td>2.430E-18</td>
</tr>
<tr>
<td>Ra-224</td>
<td>1.445E-16</td>
<td>2.621E-21</td>
<td>5.347E-18</td>
</tr>
<tr>
<td>Ra-224</td>
<td>3.416E-22</td>
<td>2.134E-27</td>
<td>1.264E-23</td>
</tr>
<tr>
<td>Ra-225</td>
<td>1.038E-19</td>
<td>2.647E-24</td>
<td>3.840E-21</td>
</tr>
<tr>
<td>Ra-226</td>
<td>1.011E-15</td>
<td>1.023E-15</td>
<td>3.740E-17</td>
</tr>
<tr>
<td>Ra-228</td>
<td>1.702E-19</td>
<td>6.244E-22</td>
<td>6.299E-21</td>
</tr>
<tr>
<td>Ac-225</td>
<td>1.891E-20</td>
<td>3.258E-25</td>
<td>6.995E-22</td>
</tr>
</tbody>
</table>
Decay Heat:

- **Heat Generated at Time Zero:** 0.03226 W
- **Heat Generated When Sealed:** 0.03227 W
- **Heat Generated When Opened:** 0.03227 W

Regulatory Requirements Warning

Radcalc utilizes numerically based criteria to classify packages against the regulations. Many regulations also include subjective criteria that Radcalc does not consider. The user must check to ensure that all requirements in the regulations are met.

DOT Classification Results

* DOT classification calculations are made at the end of the user-specified decay time.

Radioactive Determination:

- **Radioactive:** Yes
- **ACEM Limit Fraction:** 1749000 ACEMs (ACEMs and ALECs > 1.0)
- **ALEC Limit Fraction:** 1840000 ALECs (Number of ACEMs)

* This package is not exempt from 49 CFR Subchapter C.

- **Effective A2s for Mixture:** 2.139E+10 Bq

Type Determination:

- **Type:** B
- **A2 Limit Fraction:** 12.04 A2s (A2s > 1.0)

Limited Quantity Determination:

- **Limited Quantity:** No (Solid, activity > 0.001 A2)
- **Activity:** 12.04 A2
- **Fissile:** Yes
- **Fissile Excepted:** Yes (b)

LSA Determination:

43
LSA-I: No
(Fissile excepted, ACEMs > 30 x rad limits)
LSA-II: No
(A2s/gm > 0.0001)
LSA-III: Yes
(A2s/gm <= 0.002)

Specific Activity:
0.001192 A2/gm
0.001071 Ci/gm

HRCQ Determination:
HRCQ: No
(A2s <= 3000, Activity <= 1000 TBq)

Fissile: Yes
(Contains fissile isotopes per 49 CFR 173.403)

Fissile Excepted Determination:
Fissile Excepted: Yes (b)
(Fissile isotopes <= 15 grams, container + contents
solid non-fissile >= 1.229E+03 grams)

Fissile Mass: 6.146 gm
Container beryllium, lead, graphite, and hydrogenous material
enriched with deuterium: 0 gm
Container Mass: 5806000 gm
Waste lead: 0 gm
Waste beryllium, graphite, and hydrogenous material
enriched with deuterium: 0 gm
Waste Mass: 10100 gm
Solid Non-Fissile Mass: 5816000 gm
Total Uranium Mass: 630.1 gm
U-233 Mass: 5.175E-11 gm
U-235 Mass: 4.766 gm
Uranium Enrichment: 0.7564%
Total Plutonium Mass: 1.589 gm
Pu-239 Mass: 1.354 gm
Pu-241 Mass: 0.02536 gm

Reportable Quantity Determination:
Reportable Quantity: Yes
(RQs >= 1.0)

RQ Limit Fraction: 57.09
(Number of RQs)

Shipping Papers and Labels:
Isotope Number of A2s Fraction of A2s Cumulative A2s Cumulative Fraction of A2s
+ Am-241 4.187 0.3479 4.187 0.3479
+ Pu-239 3.108 0.2582 7.295 0.6061
+ Pu-240 1.698 0.1411 8.993 0.7472
+ Pu-241 1.619 0.1345 10.61 0.8817
+ Pu-238 0.8692 0.07221 11.48 0.9539
Sr-90 0.3031 0.02518 11.78 0.979
U-235m 0.1553 0.0129 11.94 0.992
Cs-137 0.0918 0.007626 12.03 0.9996

Contains 95% of the total A2s and must be included per 49 CFR 173.433.
* Radionuclides comprising less than 0.1% of the total A2s are not shown in the list.

DOE Classification Results

* DOE classification calculations are made at the end of the user-specified decay time.

DOE-STD-1027 Category Determination:
Category: < Cat 3
(Cat3s <= 1.0)
Category 2 Limit Fraction: 0.005803
Cat 3 Limit Fraction: 0.7678

* The DOE-STD-1027 category determination is based on dose-related limits.
The user must apply any criticality-related limits separately.

Dose-Equivalent Curies:
ICRP-72 DE-Ci: 0.2959

44
HNF-43821 Rev. 3

<table>
<thead>
<tr>
<th>FGR-11 DE-Ci:</th>
<th>0.3267</th>
</tr>
</thead>
</table>

TRU Waste Determination:
- TRU Waste: Yes (TRU activity > 100 nCi/gm)
- TRU Activity: 26400 nCi/g

WIPP Quantities:
- FGE Value: 4.482
- PE-Ci Value: 0.3182

NRC Classification Results

* NRC classification calculations are made at the end of the user-specified decay time.

NRC Container Category:
- Container Category: III
- LSA-I: Yes
- LSA-II: No
- LSA-III: Yes
- Total Activity: 10.82 Ci
- A2 Limit Fraction: 12.04 A2s

Hydrogen/Helium Gas Results

* Hydrogen gas calculations are made at the end of the user-specified seal time.

<table>
<thead>
<tr>
<th>Hydrogen Gas:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 Concentration:</td>
<td>0 %</td>
</tr>
<tr>
<td>H2 Moles:</td>
<td>0 moles</td>
</tr>
<tr>
<td>H2 Volume:</td>
<td>0 cm³</td>
</tr>
<tr>
<td>H2 Rate When Sealed:</td>
<td>0.1002 cm³/hr (0 C, 101.325 kPa)</td>
</tr>
<tr>
<td>H2 Rate When Opened:</td>
<td>0.1002 cm³/hr (0 C, 101.325 kPa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Helium Gas:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>He Concentration:</td>
<td>0 %</td>
</tr>
<tr>
<td>He Moles:</td>
<td>0 moles</td>
</tr>
<tr>
<td>He Volume:</td>
<td>0 cm³</td>
</tr>
<tr>
<td>He Rate When Sealed:</td>
<td>1.325E-06 cm³/hr (0 C, 101.325 kPa)</td>
</tr>
<tr>
<td>He Rate When Opened:</td>
<td>1.325E-06 cm³/hr (0 C, 101.325 kPa)</td>
</tr>
</tbody>
</table>

Pressure When Opened:
- Partial Pressure (H2): 0 kPa (if H20 present in waste)
- Partial Pressure (He): 0 kPa (if H20 present in waste)
- Total Pressure (H2 + He + Air): 101.3 kPa (if H20 present in waste)
7.8 PNNL Supplied Data on Plutonium Dioxide Enthalpies and Free Energies of Reaction

<table>
<thead>
<tr>
<th>Formula</th>
<th>Compound</th>
<th>$\Delta H_{f,298}$</th>
<th>$\Delta G_{f,298}$</th>
<th>data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO$_2$</td>
<td>uraniumite</td>
<td>-1084.9</td>
<td>-1031.7</td>
<td>Wagman</td>
</tr>
<tr>
<td>PuO$_2$</td>
<td>plutonium dioxide</td>
<td>-1055.8</td>
<td>-998.113</td>
<td>Guillaumont</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>water</td>
<td>-285.830</td>
<td>-237.129</td>
<td>Wagman</td>
</tr>
</tbody>
</table>

Thermo data from:

<table>
<thead>
<tr>
<th>Reactions</th>
<th>ΔH_{rxn}</th>
<th>ΔG_{rxn}</th>
<th>ΔH_{m}</th>
<th>ΔG_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>U + 2 H$_2$O \rightarrow UO$_2$ + 2 H$_2$</td>
<td>-513.24</td>
<td>-557.44</td>
<td>-513.24</td>
<td>-557.44</td>
</tr>
<tr>
<td>Pu + 2 H$_2$O \rightarrow PuO$_2$ + 2 H$_2$</td>
<td>-484.14</td>
<td>-523.86</td>
<td>-484.14</td>
<td>-523.86</td>
</tr>
</tbody>
</table>