Energy metabolism in *Desulfovibrio vulgaris* Hildenborough: insights from transcriptome analysis

Patrícia M. Pereira¹, Qiang He²,³, ⁴, Filipa M. A. Valente¹, António V. Xavier¹, Jizhong Zhou²,⁵,⁶, Inês A. C. Pereira¹ & Ricardo O. Louro¹*

¹ Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal;
² Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;
³ Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, Tennessee 37996;
⁴ The Center for Environmental Biotechnology, the University of Tennessee, Knoxville, Tennessee 37996;
⁵ Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720;
⁶ Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019.

To whom correspondence should be addressed at: ITQB, Rua da Quinta Grande, 6 Apt. 126, 2780-156 Oeiras, Portugal. Tel.351-214469309; Fax 351-214411277 http://www.itqb.unl.pt, louro@itqb.unl.pt
Keywords: Bioenergetic metabolism, Hydrogen metabolism, Microarrays, Respiratory complexes, Sulphate-reducing bacteria.

ABSTRACT

Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.
Abbreviations:

HS- hydrogen/sulphate medium, LS- lactate/sulphate medium, LT- lactate/thiosulphate medium, PS- pyruvate/sulphate medium, P-pyruvate medium,
SRB- Sulphate-reducing bacteria, Type I cytochrome c$_3$ - TpIc_3
INTRODUCTION

Sulphate-reducing bacteria (SRB) are anaerobic prokaryotes widespread in natural habitats like marine or freshwater sediments, soil, and also the gastrointestinal tract of many animals, including man [1]. They are particularly abundant in habitats with high concentration of sulphate such as sea water, effectively linking the global sulphur and carbon cycles [2, 3]. SRB use sulphate or other sulphur oxo-anions as electron acceptors for the anaerobic oxidation of inorganic or organic substrates such as hydrogen, lactate, acetate, ethanol and propionate. As a consequence of this metabolism, large amounts of sulphide are produced and accumulated in their natural habitats. This aggressive metabolic end-product poses an important economic problem for the oil industry due to its involvement in biocorrosion of metal structures [4] in addition to souring of oil and gas deposits [3]. However, SRB can also reduce a wide variety of other substrates, including heavy metals and radionuclides. Examples include U(VI), Tc(VII), As (V) and Cr (VI), making these bacteria interesting targets to use for bioremediation of contaminated anaerobic sediments and groundwater [5, 6]. In situ stimulation of microbial populations using specific electron donors or acceptors is an attractive strategy for environmental bioremediation processes. A better understanding of energy metabolism of SRB growing with different energy sources or electron acceptors is thus crucial for exploring their potential in bioremediation, as well as to control their activity wherever it leads to undesirable consequences.

Despite numerous studies, the bioenergetic mechanism of sulphate respiration is still far from being understood. Odom and Peck proposed a bioenergetic pathway to explain energy conservation in Desulfovibrio, the most studied genus of SRB, which involved cycling of hydrogen during growth in lactate/sulphate [7]. The proposal considers that protons and electrons resulting from the oxidation of lactate to acetate are converted to hydrogen in the cytoplasm by a cytoplasmic hydrogenase. The hydrogen then diffuses across the membrane to the periplasm where it is converted to
protons and electrons by a periplasmic hydrogenase. Transfer of the resulting electrons back to the cytoplasm for sulphate reduction results in a transmembrane proton gradient that can drive ATP synthesis by the ATP synthase complex. This mechanism has been disputed because hydrogen formation from lactate oxidation to pyruvate is energetically unfavourable, even in conditions where there is a large excess of lactate in the presence of small hydrogen concentrations [8, 9]. Furthermore, this mechanism requires the presence of a cytoplasmic hydrogenase, which is already known to be absent in the genome of some SRB such as Desulfovibrio desulfuricans G20 (www.jgi.doe.gov) and Desulfotalea psychrophila [10]. Alternative chemiosmotic models have been proposed in which electrons generated from substrate oxidation are transported through membrane-bound electron carriers to sulphate reduction (vectorial electron transport), and in the process translocate protons to the periplasm (vectorial proton transport) [11, 12]. This electron transport chain most likely involves the participation of menaquinone [13], plus two membrane-bound redox complexes that are conserved in sulphate reducers, the Qmo and Dsr complexes [14-16]. There is also evidence that cycling of other reduced intermediates like CO or formate may also be involved in the energy conservation mechanisms of Desulfovibrio vulgaris Hildenborough (referred hereafter as D. vulgaris) [17-19]. Biochemical, genetic and genomic studies of D. vulgaris have allowed the identification and initial characterization of several of the participants in the electron transfer network involved in sulphate respiration [20]. However, the genome reveals a large number of genes involved in energy metabolism with an unknown function. Furthermore, different electron transport pathways seem to be involved in the oxidation of pyruvate, lactate or hydrogen [17, 21], and different metabolic strategies may be used by different organisms [20]. In this work, the global gene expression profile of D. vulgaris grown in different electron donors and acceptors was investigated in order to obtain a broad view of the transcriptional response of the energy metabolism genes. It has been
shown that there is a good correlation between mRNA levels and protein abundance of Central Intermediary Metabolism and Energy Metabolism genes [22], thus enabling a physiological interpretation of the transcriptional response. This study complements a previous one comparing transcriptional changes for growth in formate/sulphate relative to lactate/sulphate [23]. The results provide several insights into the bioenergetic pathways that are operative under the different growth conditions.

MATERIALS & METHODS

Growth conditions

D. vulgaris (DSM 644) was grown in modified medium C [24] at 37°C, under an atmosphere of N₂. The modified medium C contained 25 µM FeSO₄.7H₂O and 1 µM NiCl₂.6H₂O. It was previously shown that in medium C without supplements the amount of adventitious selenium and nickel is below the detection limit using atomic absorption spectrometry (<0.04mg/l and <0.01mg/l, respectively) [25]. Medium C-LS contained 40 mM lactate, 40 mM sulphate, and was used as a control. Pyruvate (40 mM) and thiosulphate (40 mM) were used as an alternative electron donor and acceptor, respectively. Both pyruvate and thiosulphate were added from stock solutions in sterile conditions with a 0.2 µm filter. Growth with limiting sulphate was carried out with pyruvate (40 mM), using a 10% pyruvate/sulphate grown inoculum. Media (1000-ml) were dispensed in 2000-ml DURAN® SHOTT bottles, flushed with N₂ and sealed with butyl rubber stoppers. Cultures with hydrogen as electron donor were grown in a 3L fermentor containing 2L of growth medium with 40 mM acetate, gassed with a mixture of 80 % (vol/vol) H₂, 20 % (vol/vol) CO₂ at 900 ml/min, stirred at 250 rpm and with a constant pH of 6.8. As a control, *D. vulgaris* was grown in the same conditions but in Medium C-LS, and gassed with N₂. In both procedures a 10% (vol/vol) inoculum of a freshly grown culture of *D. vulgaris* in the same conditions of the experiment was used,
with exception to pyruvate culture where the inoculum was grown in pyruvate/sulphate medium. The optical density of the cultures at 600 nm (OD$_{600}$) was determined with a Shimadzu UV-1603 spectrophotometer. Cultures were harvested by centrifugation (10,000 x g for 15 min) in the mid-exponential phase with an OD$_{600}$ of 0.47 for lactate/sulphate (LS), 0.42 for H_2+CO$_2$+acetate/sulphate (HS), 0.45 for lactate/thiosulphate (LT), 0.6 for pyruvate/sulphate (PS) and 0.47 for growth on pyruvate (P). The cells were stored at -70ºC until used.

Global expression analysis

Microarray expression profiling was carried out using *D. vulgaris* whole genome microarrays which contain 3,482 of the 3,531 protein-coding sequences of the *D. vulgaris* genome [26]. All microarray procedures including total RNA extraction, cDNA labelling, microarray hybridization and washing were performed using previously published protocols [26]. RNA extraction, purification, and labelling were performed independently on each cell sample. Four samples of each total RNA preparation were labelled, two with Cy3-dUTP and another two with Cy5-dUTP, for microarray hybridization. To hybridize microarray glass slides, the Cy5-dUTP-labelled cDNA targets from one lactate/sulphate culture (control culture) were mixed with the Cy3-dUTP-labelled cDNA targets from one culture grown with a different electron donor or acceptor and vice versa (dye swap). As a result, each biological sample was hybridized to four microarray slides. The arrays were visualized by ScanArray Express confocal laser scanner (Perkin Elmer), and hybridization signal intensities were quantified using ImaGene software version 6.0 (Biodiscovery, Marina Del Rey, CA).

Two biological replicates obtained from independently grown *D. vulgaris* cultures were used in the gene expression analysis for all growth conditions. In addition, each microarray slide contained duplicate sets of gene fragments and the RNA isolated from each replicate sample was hybridized with four microarray slides. This provided a total
of 16 data points per experimental condition enabling the use of rigorous statistical tests to determine significant changes in gene expression. The resulting data files were subjected to Lowess intensity-based normalization and further analyzed using GeneSpring version 5.1 (Silicon Genetics, Redwood City, Calif.). Lowess normalization was performed on each microarray slide, and results of the two replicate cultures of each experimental condition were used for statistical analysis. To assess the statistical significance of individual data points, the Student t-test was used to calculate a \(p \)-value to test the null hypothesis that the expression level was unchanged. Gene expression changes observed in these arrays were extensively validated by RT-PCR in previous studies [26-29]. The annotation of the ORFs was obtained from the comprehensive microbial resource at The Institute for Genomic Research (TIGR). The data were deposited in NCBI's Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE8069.

RESULTS AND DISCUSSION

Gene expression profiling was performed using cells from *D. vulgaris* collected at mid-exponential phase (Figure 1). The transcriptomic profiles of *D. vulgaris* cultures grown in these conditions were determined using DNA microarrays representing approximately 99% of the total protein-coding capacity of the *D. vulgaris* genome [18, 26]. Relative expression ratios were derived by comparing mRNA abundance levels in cells grown in HS, PS, LT and P relative to mRNA levels in LS grown cells. The number of genes displaying more than two fold change in transcript abundance, either up or down and corresponding to a \(p \) value of 0.05 or smaller was 761 in HS, 272 in LT, 73 in PS, and 96 in P (Figure 2). Of the 3,379 chromosomal genes in *D. vulgaris*, 2,315 genes have so far been classified into one of the 20 clusters of orthologous groups of functional categories (COG) [30, 31]. Growth on HS shows considerable
changes in the transcription profile versus the LS reference across all COGs, whereas
the most significant changes found during growth on LT, PS and P as compared to LS,
involve primarily genes with functions in energy and central intermediary metabolism
(Table 1). A detailed list of energy metabolism genes that display changes in their
expression levels is presented in Table 2.

Changes in gene expression using hydrogen as electron donor

The use of hydrogen as electron donor lead to very significant changes in gene
expression relative to growth with lactate, with approximately 30% of the genes
involved in energy metabolism being affected (Table 2).

Periplasmic hydrogenases. As might be expected, some of the most affected genes
include those that code for hydrogenases. The genome of D. vulgaris includes four
periplasmic-facing hydrogenases, the [FeFe] hydrogenase (DVU1769-70; hydAB), two
[NiFe] hydrogenase isoenzymes (DVU1921-22; hynAB-1 and DVU2525-26; hynAB-2)
and a [NiFeSe] hydrogenase (DVU1917-18; hysAB). The genome also contains genes
for two cytoplasmically oriented hydrogenases, the Ech hydrogenase (DVU0429-34;
echABCDEF) and the Coo hydrogenase (DVU2286-93; cooMKLXUHF). It has not been
clearly established if these hydrogenases may have specific roles, or if this redundancy
allows functional compensation under different conditions [32, 33]. Recently, it was
shown that expression of the three main hydrogenases detected in D. vulgaris ([FeFe],
[NiFe], and [NiFeSe]) is affected by the metals available in the growth medium, and
that the [NiFeSe] hydrogenase is dominant when nickel and selenium are available
[25]. In the absence of selenium the [NiFeSe] hydrogenase is not detected and the
major hydrogenases present are the [NiFe], and the [FeFe] hydrogenases. In the
present case the hysAB genes displayed a strong increase in transcript level with
growth on HS, whereas the hydA gene transcript was slightly down-regulated and the
hynAB-1 genes showed no change. These data show that transcription of the [NiFeSe]
The hydrogenase gene is strongly up-regulated when hydrogen is supplied as electron donor, even when selenium is not available in the medium and thus the protein is not synthesised. This indicates that the [NiFeSe] is the most responsive hydrogenase to the presence of hydrogen. Western blot in similar growth conditions reveals a modest increase of both the [NiFe], and [FeFe] hydrogenases when comparing HS to LS conditions [25]. However, when nickel is present and selenium is not, the [NiFe], hydrogenase is also strongly increased with growth in hydrogen relative to lactate. Very recently, it was also described that the transcription levels of the different hydrogenases of *D. vulgaris* are affected by the hydrogen concentration in the gas phase [29]. The *hysAB* transcript level is higher with hydrogen at 5% (v/v) than with 50% and lowest with LS, whereas the opposite is observed for *hydAB*. These results, corroborated with studies of knock-out mutants, suggest that the high-activity, low-affinity [FeFe] hydrogenase is preferred when H₂ is plentiful, whereas the lower-activity, higher-affinity [NiFeSe] hydrogenase is preferred when there is a low concentration of H₂. In our studies the hydrogen concentration used was 80% and the *hysAB* genes were strongly up-regulated, but the other differences in growth conditions may preclude a direct comparison of the results. Overall, these studies reveal that the regulation of the periplasmic-facing hydrogenases of *D. vulgaris* is quite intricate and fine-tuned to changes in the environmental conditions. The presence of several hydrogenases with different properties and cofactors undoubtedly provides this organism with a great flexibility in terms of hydrogen metabolism, which is a crucial metabolite in anaerobic environments and also plays an essential role in its energetic metabolism.

Cytoplasmic facing hydrogenases. The two membrane-bound cytoplasmic-facing hydrogenases showed opposite response when hydrogen was used as electron donor, with the *echABCDEF* prominent among the gene clusters up-regulated and the *cooMKLXUHF* prominent among those down-regulated. A similar situation was reported for cells grown in formate/sulphate [23]. In *Methanosarcina barkeri* the Ech
hydrogenase complex has been shown to be multifunctional, with one of its roles being to drive ferredoxin reduction with H₂, which is used for CO₂ fixation [34, 35]. This is a crucial activity for *D. vulgaris* cells grown in hydrogen, since acetate and CO₂ are the only carbon sources available. Thus, the increased expression of the Ech hydrogenase in these conditions points to its role in reducing ferredoxin for carbon fixation. Unfortunately, no replicates were obtained for the ferredoxin I gene and therefore its transcriptional response cannot be evaluated. The down-regulation of genes coding for the Coo hydrogenase suggests that the CO pathway is operative during growth with lactate, but does not function when H₂ is used as electron donor.

Formate dehydrogenases. All three formate dehydrogenases encoded in the *D. vulgaris* genome (DVU0587-88; DVU2481-85; DVU2809-12) and the pyruvate:formate lyase activating enzyme (DVU2271; *pflA*) showed increased expression during growth on hydrogen, as reported also for growth on formate [23]. This suggests that formate cycling is occurring during growth with HS, providing an alternative pathway for energy generation: CO₂ and acetate are converted to formate, which is transported across the membrane and is oxidised in the periplasm by the formate dehydrogenases, thus contributing to the proton motive force as electrons are transferred back to the cytoplasm to reduce sulphate [18, 19, 36].

Transmembrane complexes. Contrary to most organisms, the terminal reductases of SRB are located in the cytoplasm, and therefore, are not directly involved in charge translocation across the membrane. The electrons generated in the periplasm from hydrogen oxidation have to be transported across the membrane to be used in the reduction of sulphate. *Desulfovibrio* spp. contain several membrane-bound redox complexes that can accept electrons from an abundant pool of periplasmic cytochromes c that act as electron acceptors for the hydrogenases and formate dehydrogenases [20]. The first such complex to be identified was the transmembrane Hmc complex of *D. vulgaris*, which was proposed to accept electrons from periplasmic
hydrogenases via the type I cytochrome c_3 (TpIC$_3$), and to transfer them to the cytoplasmic reduction of sulphate [37]. In support of this proposal increased expression of the Hmc complex was observed when using hydrogen as electron donor [38], and a Δhmc mutant where the hmc operon was knocked-out grew slower than the wild type in these conditions [39]. Contrary to these results in the present study the hmc operon was one of those more down-regulated with growth on H_2. It is possible that the conditions used here for HS growth (constant pH and with H_2/CO_2 bubbled through the medium, removing H_2S), which were very different from the referred studies, led to down-regulation of the hmc genes. Our observation is corroborated by recent results from the same group obtained with D. vulgaris grown with 5% and 50% hydrogen showing also a reduced transcript level of the hmc operon relative to lactate growth conditions [29]. An alternative transmembrane electron transfer pathway may involve the Tmc complex, whose protein subunits are homologous to those of Hmc [40], given that the gene encoding the cytochrome c subunit of this complex ($tmcA$, DVU0263) was up-regulated in HS relative to LS. The TmcA cytochrome is actually a much better electron acceptor for the periplasmic hydrogenases via TpIC$_3$ than HmcA [41, 42].

The two membrane complexes QmoABC and DsrMKJOP, conserved in all SRB sequenced to date, are thought to be involved in the sulphate reduction pathway as electron donors to the enzymes APS reductase and sulphite reductase, respectively [14-16]. Genes from both these complexes were down-regulated in H_2-grown cells, indicating that electron transport through Qmo and Dsr complexes is less important during growth on hydrogen than on lactate. This may be related to the up-regulation of the genes of the Tmc complex that may provide an alternative route for the flow of electrons to the cytoplasmic terminal reductases. The three complexes, Tmc, Hmc and Dsr have a homologous cytoplasmic subunit, which displays spectroscopic features indicative of the presence of a special [4Fe4S]$^{3+}$ center [16, 40], and this suggests this
subunit may play similar roles in the cytoplasm. The transmembrane electron flow through the Tmc complex may allow a reduced electron flow through the Qmo and Dsr-associated pathways. This proposal is in agreement with the fact that the genes encoding the APS reductase (DVU0846/7) and sulphite reductase (DVU0402/4) did not display significant differences in transcript levels.

Another membrane redox complex of unknown function, RnfCDGEAB (DVU2792-97), showed up-regulation for several genes. This complex may interact with a decaheme cytochrome c encoded in an adjacent gene (DVU2791; DhcA). The rnf genes may be associated with different functions in different organisms. They were first identified in *Rhodobacter capsulatus* as being involved in nitrogen fixation [43]. The three integral membrane subunits RnfADE, and the cytoplasmic RnfG subunit, show similarity to subunits of the Nqr complex of *Vibrio* spp., a Na$^+$-translocating NADH:quinone oxidoreductase [44]. In *E. coli* the Rnf complex is named Rsx and is involved in keeping the redox-sensitive transcriptional factor SoxR in its inactive reduced state during aerobic growth [45]. There is so far no information as to the possible role of the Rnf complex in *Desulfovibrio* spp.

Ethanol pathway. Some studies have suggested the involvement of an additional bioenergetic pathway in *D. vulgaris* involving ethanol, which can be oxidised by an alcohol dehydrogenase and the reducing equivalents transferred to sulphate reduction, through a still uncertain mechanism involving *hdrABC* and other gene products [46]. A relationship between ethanol and H$_2$ metabolism was first revealed by the fact that a *D. vulgaris* mutant lacking the [FeFe] hydrogenase had very low levels of the DVU2405-encoded alcohol dehydrogenase, which is one of the most highly expressed proteins in several growth conditions [46, 47]. This pathway is more active during exponential than stationary growth phases [23]. In HS-grown cells there is an up-regulation of this alcohol dehydrogenase gene (DVU2405; *adh*), as previously reported [46], and the gene for a subunit of a putative heterodisulphide reductase (DVU2404; *hdrC*),
suggesting that this pathway is more important than in LS growth conditions. This pathway provides an alternative route for electron transfer to sulphate reduction, and may also be associated with the down-regulation of genes encoding the Qmo and Dsr complexes, which contain subunits homologous to Hdr proteins.

Changes in gene expression using pyruvate as energy source

The number of energy metabolism genes with modified expression in PS relative to LS was quite small and all changes were below four-fold either up or down (Table 2). This agrees with the fact that oxidation of lactate proceeds via pyruvate. Three of the *ech* genes were up-regulated. In these growth conditions carbon fixation is not required and it is more likely that the Ech hydrogenase is acting to generate H$_2$ from ferredoxin, which is reduced by the pyruvate:ferredoxin oxidoreductase. This process is associated with energy conservation as proposed in the hydrogen-cycling hypothesis, and suggests a greater relevance for this pathway with pyruvate than with lactate. The observed up-regulation of the *ech* operon in HS and PS conditions suggests that in *D. vulgaris*, as in *M. barkeri* [34], the Ech hydrogenase is able to function bi-directionally depending on the growth conditions. Among the few energy metabolism genes down-regulated were the *hmc* genes (DVU0533; *hmcD*), the *fhdA* gene (DVU0587) coding for the catalytic subunit of the periplasmic FdhAB formate dehydrogenase, and the gene coding for the redox protein flavodoxin (DVU2680; *fla*).

In cells grown with pyruvate and a restricted amount of sulphate more energy metabolism genes were up-regulated than in PS-grown cells, but all expression ratios were below three-fold (Table 2). *D. vulgaris* does not grow on pyruvate alone unless a small amount of sulphate is present at the beginning of growth, probably due to the inhibitory effect of accumulation of reduced compounds during the fermentation burst [17, 48]. In this study a small amount of sulphate was present in the medium because the inoculum was made using cells grown in PS conditions. Interestingly, and contrary
to our expectation, in these sulphate-limited conditions the genes for several proteins thought to be involved in sulphate respiration showed increased expression. These included APS reductase, some subunits of the Qmo and Dsr complexes, the Tplc\(_3\) (DVU3171), the [NiFe]\(_2\) hydrogenase (DVU2524-25), and several genes of the Hmc complex. The genes for two other membrane redox complexes of unknown function were also up-regulated (DVU0692/3 and DVU3143/4). The increased expression of the Hmc complex agrees with published experiments, which showed that in similar growth conditions a Δhmc mutant accumulates large amounts of hydrogen, in contrast to the wild type [17]. These results suggest that during growth in pyruvate with limiting sulphate, cycling of hydrogen is also occurring. Only two energy metabolism genes were down-regulated, fla and fhdA genes as observed also in PS. The reduced level of transcription of the gene coding for flavodoxin in both pyruvate growth conditions suggests a role for this protein in the lactate oxidation pathway upstream of pyruvate.

Changes in gene expression using thiosulphate as electron acceptor

Although previous studies have addressed the effect of different electron donors in the transcriptional and translational response of *D. vulgaris* [23, 46] this is the first time that the effect of a different electron acceptor is explored. In contrast to sulphate, thiosulphate does not require prior activation to be used as electron acceptor and therefore a higher cell yield would be expected. However, the yield of cells grown in LT is lower than in LS as previously reported [48]. The down-regulation of genes coding for ATP synthase (DVU0774-79), APS reductase (DVU0846-47; apsAB), the Qmo and Dsr complexes, and the [NiFe]\(_2\) hydrogenase (Table 2) suggests a low energy state of the cells, which agrees with the slower growth rate (Figure 1). Reduction of thiosulphate yields sulphite, which at high concentrations is toxic [49]. It is possible that accumulation of this compound led to down-regulation of genes involved in the
sulphate reduction pathway as observed for nitrite, which inhibits the sulphite reductase and thus leads to an accumulation of sulphite [14, 26]. In agreement with this proposal several of the genes mentioned above were also down-regulated in D. vulgaris cells grown in the presence of nitrite [14, 26]. Some genes of the membrane-bound (DVU2482; fdnG) and the three-subunit (DVU2811; fdhB) formate dehydrogenases were also down-regulated, whereas the genes coding for the periplasmic two-subunit formate dehydrogenase (DVU0587/8; fdhAB) were up-regulated indicating different regulation for these proteins in LT, in contrast with what was observed in HS conditions. The up-regulation of the genes coding for the [FeFe] hydrogenase, which displays the highest rates of hydrogen uptake when compared with the other periplasmic hydrogenases [50], may serve to improve energy recovery through H\textsubscript{2} cycling. The gene coding for a periplasmic octaheme cytochrome c (DVU3107) of unknown function is the most down-regulated energy metabolism gene in these conditions. The physiological role of this cytochrome is not known but the considerable down regulation in these conditions and lack of transcriptional response of this gene in the other conditions tested suggests a role in sulphate reduction. This is supported by the significant down-regulation of this gene in the transition from exponential to stationary phase in D. vulgaris cells grown with lactate/sulphate and with formate/sulphate [23]. Unexpectedly, the gene for one of the subunits of the putative thiosulphate reductase (DVU0172; phsB) was down-regulated, as well as a putative lactate dehydrogenase (DVU2784; lldD), which suggests that these genes may code for proteins with different functions from those indicated in the genome annotation.

Finally, the gene for an iron-sulphur flavoprotein (DVU0819; isf) is noteworthy because it was up-regulated in all conditions tested. This protein is homologous to the Isf protein of Methanosarcina thermophilus, where it plays a role in electron transport during fermentation of acetate to methane by accepting electrons from ferredoxin [51]. The role of Isf in Desulfovibrio metabolism has not been investigated.
Overall view of the bioenergetic metabolism of *D. vulgaris* from the transcriptional studies

In this work, the global gene expression response of *D. vulgaris* to growth on different electron donors and acceptors provided several important insights into the bioenergetic pathways of this organism, and its response to different growth conditions. A simplified scheme of these pathways deduced from the transcriptional results in this work, and taking into account previously published results [17, 23] is presented in Figure 3. The change from an organic carbon and energy source (lactate) to H\(_2\) as energy source and CO\(_2\)/acetate as carbon source results in a strong shift in the transcriptional pattern of *D. vulgaris*. Since hydrogen is a ubiquitous metabolite in anaerobic environments, and it is likely to be an important energy source for *Desulfovibrio* spp. in their natural habitats, these results are of great physiological significance. The evidence indicates a shift in metabolic trafficking involving different bioenergetic pathways when changing from lactate to H\(_2\). The formate cycling pathway is more relevant for growth with H\(_2\) than lactate, whereas the contrary is observed for the CO cycling pathway. The results provide also evidence for the existence of a pathway involving ethanol that is up-regulated during growth in H\(_2\), and provides a soluble route for electron transfer to sulphate reduction. This pathway involves several novel proteins of unknown function that should be further investigated. Regarding the complexes involved in the transmembrane electron transfer the evidence indicates that the Tmc is preferred during growth with H\(_2\), whereas the Qmo and Dsr are more relevant during growth with carbon sources.

An interesting observation from the present results is that when several, seemingly redundant, isoenzymes are present, as in the case of hydrogenases or formate dehydrogenases, there are different transcriptional responses to the changes in growth conditions, indicating that these isoenzymes have specialized roles and are not
completely interchangeable. All the studies published so far indicate that there is a fine-tuning of the activity of the periplasmic hydrogenases, which should permit a rapid adaptation to changing environmental conditions, including different intracellular and extracellular concentrations of \(\text{H}_2 \) or metals available. The present study also gives strong support for a bifunctional role of the cytoplasmic Ech hydrogenase that may reduce ferredoxin for carbon fixation during growth in \(\text{H}_2 \), or oxidize ferredoxin forming \(\text{H}_2 \) for hydrogen cycling during growth in PS.

Finally, the results reported in this work identified several novel gene products that are involved in energy metabolism and that merit further study to clarify their function. Examples are the Rnf complex (and other membrane redox complexes), the proteins involved in the ethanol pathway, the octaheme cytochrome c, the Isf protein, flavodoxin and several others. Our study highlights the high complexity and plasticity of the D. vulgaris energetic metabolism and show that further studies are warranted before sulphate respiration can be fully understood.

ACKNOWLEDGEMENTS

This work was supported by Fundação para a Ciência e Tecnologia grants POCI/2004/QUI/55690 to ROL and PTDC/QUI/68368/2006 to IACP, co-funded by FEDER program, and was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program:GTL through contractDE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. PMP was a recipient of the FCT PhD grant SFRH/BD/5231/2001. The authors are grateful to Prof. Gerrit Voordouw for helpful discussions and sharing data prior to publication.
REFERENCES

responses to low oxygen exposure in *Desulfovibrio vulgaris* Hildenborough. J Bacteriol 189: 5996-6010

51 Zhao, T., Cruz, F. and Ferry, J. G. (2001) Iron-sulfur flavoprotein (Isf) from *Methanosarcina thermophila* is the prototype of a widely distributed family. J Bacteriol **183**: 6225-6233
TABLES

Table 1. **Distribution of up- and down-regulated genes in *D. vulgaris* grown with different electron donors and acceptors for the COG functional categories presenting greater changes.** The total number refers to the number of the all genes changed in each growth condition. Only those genes with *p*-value ≤ 0.05 and a ratio value ≤ 0.5 and ≥ 2.0 are included.

<table>
<thead>
<tr>
<th>COG functional category</th>
<th>HS</th>
<th>LT</th>
<th>PS</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total 761</td>
<td>Total 272</td>
<td>Total 73</td>
<td>Total 96</td>
</tr>
<tr>
<td></td>
<td>No. of genes up</td>
<td>No. of genes down</td>
<td>No. of genes up</td>
<td>No. of genes down</td>
</tr>
<tr>
<td>Cell envelope</td>
<td>22 up, 29 down</td>
<td>7 up, 14 down</td>
<td>1 up, 3 down</td>
<td>9 up, 3 down</td>
</tr>
<tr>
<td>Energy and central intermediary metabolism</td>
<td>45 up, 35 down</td>
<td>14 up, 27 down</td>
<td>7 up, 4 down</td>
<td>20 up, 3 down</td>
</tr>
<tr>
<td>Protein synthesis</td>
<td>2 up, 42 down</td>
<td>1 up, 8 down</td>
<td>0 up, 0 down</td>
<td>1 up, 0 down</td>
</tr>
<tr>
<td>Regulatory functions</td>
<td>22 up, 17 down</td>
<td>8 up, 7 down</td>
<td>3 up, 3 down</td>
<td>3 up, 2 down</td>
</tr>
<tr>
<td>Transport and binding proteins</td>
<td>34 up, 31 down</td>
<td>4 up, 25 down</td>
<td>0 up, 6 down</td>
<td>1 up, 8 down</td>
</tr>
<tr>
<td>Hypothetical proteins</td>
<td>129 up, 120 down</td>
<td>36 up, 39 down</td>
<td>11 up, 18 down</td>
<td>12 up, 21 down</td>
</tr>
<tr>
<td>Other or unknown function</td>
<td>115 up, 118 down</td>
<td>37 up, 45 down</td>
<td>7 up, 10 down</td>
<td>5 up, 8 down</td>
</tr>
</tbody>
</table>
Table 2. Changes in transcription levels of energy metabolism genes from *D. vulgaris* Hildenborough grown with different electron donors and acceptors, relative to LS. Numbers in bold highlight changes larger than four fold up- or down.

<table>
<thead>
<tr>
<th>ORF</th>
<th>TIGR</th>
<th>Annotation</th>
<th>Symbol</th>
<th>HS</th>
<th>p-value</th>
<th>LT</th>
<th>p-value</th>
<th>PS</th>
<th>p-value</th>
<th>P</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ratio</td>
<td></td>
<td>Ratio</td>
<td></td>
<td>Ratio</td>
<td></td>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>Periplasmic hydrogenases</td>
<td></td>
</tr>
<tr>
<td>ORF01868</td>
<td>DVU1769</td>
<td>periplasmic [FeFe] hydrogenase, large subunit</td>
<td>HydA</td>
<td>0.46</td>
<td>2.3 E-03</td>
<td>2.92</td>
<td>4.3 E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF01870</td>
<td>DVU1770</td>
<td>periplasmic [FeFe] hydrogenase, small subunit</td>
<td>HydB</td>
<td>4.41</td>
<td>2.9 E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02120</td>
<td>DVU1917</td>
<td>periplasmic [NiFeSe] hydrogenase, small subunit</td>
<td>HysB</td>
<td>3.42</td>
<td>3.1 E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02121</td>
<td>DVU1918</td>
<td>periplasmic [NiFeSe] hydrogenase, large subunit</td>
<td>HysA</td>
<td>15.77</td>
<td>2.0 E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03170</td>
<td>DVU2524</td>
<td>cytochrome c ø, putative</td>
<td>HynC3</td>
<td>0.27</td>
<td>5.9 E-04</td>
<td>2.65</td>
<td>8.5 E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03171</td>
<td>DVU2525</td>
<td>periplasmic [NiFe] hydrogenase, small subunit, isozyme 2</td>
<td>HynB</td>
<td>0.36</td>
<td>2.6 E-04</td>
<td>2.14</td>
<td>2.3 E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03173</td>
<td>DVU2526</td>
<td>periplasmic [NiFe] hydrogenase, large subunit, isozyme 2</td>
<td>HynA</td>
<td>0.43</td>
<td>3.2 E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytoplasmic hydrogenases</td>
<td></td>
</tr>
<tr>
<td>ORF05360</td>
<td>DVU0429</td>
<td>Ech hydrogenase, electron transfer protein</td>
<td>EchF</td>
<td>11.60</td>
<td>6.6 E-06</td>
<td>2.55</td>
<td>1.1 E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05364</td>
<td>DVU0431</td>
<td>Ech hydrogenase, unknown function</td>
<td>EchD</td>
<td>5.20</td>
<td>7.5 E-05</td>
<td>2.38</td>
<td>7.3 E-03</td>
<td>2.52</td>
<td>8.7 E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05365</td>
<td>DVU0432</td>
<td>Ech hydrogenase, hydrogenase small subunit</td>
<td>EchC</td>
<td>3.34</td>
<td>6.4 E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05366</td>
<td>DVU0433</td>
<td>Ech hydrogenase, membrane protein</td>
<td>EchB</td>
<td>10.23</td>
<td>2.2 E-06</td>
<td>2.71</td>
<td>7.1 E-04</td>
<td>2.36</td>
<td>1.5 E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05368</td>
<td>DVU0434</td>
<td>Ech hydrogenase, membrane protein</td>
<td>EchA</td>
<td>3.34</td>
<td>1.5 E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02767</td>
<td>DVU2286</td>
<td>hydrogenase, CooM subunit, putative</td>
<td>CooM</td>
<td>0.22</td>
<td>9.7 E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02769</td>
<td>DVU2287</td>
<td>hydrogenase, CooK subunit, selenocysteine-containing</td>
<td>CooK</td>
<td>0.05</td>
<td>8.4 E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02771</td>
<td>DVU2288</td>
<td>hydrogenase, CooL subunit, putative</td>
<td>CooL</td>
<td>0.11</td>
<td>2.7 E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02772</td>
<td>DVU2289</td>
<td>hydrogenase, CooX subunit, putative</td>
<td>CooX</td>
<td>0.09</td>
<td>1.0 E-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02773</td>
<td>DVU2290</td>
<td>hydrogenase, CooU subunit, putative</td>
<td>CooU</td>
<td>0.13</td>
<td>2.7 E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02775</td>
<td>DVU2291</td>
<td>carbon monoxide-induced hydrogenase, putative</td>
<td>CooH</td>
<td>0.14</td>
<td>3.9 E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02777</td>
<td>DVU2292</td>
<td>hydrogenase nickel insertion protein</td>
<td>CooA</td>
<td>0.19</td>
<td>1.9 E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF02778</td>
<td>DVU2293</td>
<td>iron-sulfur protein</td>
<td>CooF</td>
<td>0.27</td>
<td>1.4 E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periplasmic cytochromes</td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>6.8 E-06</td>
<td>2.46</td>
<td>1.4 E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF04139</td>
<td>DVU3107</td>
<td>octaheme cytochrome c</td>
<td>Occ</td>
<td>0.16</td>
<td>6.8 E-06</td>
<td>2.46</td>
<td>1.4 E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF04250</td>
<td>DVU3171</td>
<td>type I cytochrome c ø</td>
<td>Tpc3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane-bound electron transfer complexes</td>
<td></td>
</tr>
<tr>
<td>ORF05546</td>
<td>DVU0531</td>
<td>hmc complex, electron transfer protein</td>
<td>HmcF</td>
<td>0.22</td>
<td>2.6 E-03</td>
<td>2.97</td>
<td>1.9 E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05549</td>
<td>DVU0533</td>
<td>hmc complex, membrane protein</td>
<td>HmcD</td>
<td>0.14</td>
<td>1.5 E-05</td>
<td>0.48</td>
<td>4.1 E-03</td>
<td>2.10</td>
<td>4.3 E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05551</td>
<td>DVU0535</td>
<td>hmc complex, electron transfer protein</td>
<td>HmcB</td>
<td>0.20</td>
<td>1.3 E-02</td>
<td>3.17</td>
<td>8.8 E-03</td>
<td>2.33</td>
<td>3.9 E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05554</td>
<td>DVU0536</td>
<td>hmc complex, high-molecular weight cytochrome c</td>
<td>HmcA</td>
<td>0.27</td>
<td>1.2 E-02</td>
<td>2.00</td>
<td>3.4 E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03607</td>
<td>DVU2793</td>
<td>Rnf complex, membrane protein</td>
<td>RnfD</td>
<td>2.25</td>
<td>6.5 E-06</td>
<td>2.15</td>
<td>3.2 E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03609</td>
<td>DVU2795</td>
<td>Rnf complex, membrane protein</td>
<td>RnfE</td>
<td>2.62</td>
<td>3.2 E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03611</td>
<td>DVU2796</td>
<td>Rnf complex, membrane protein</td>
<td>RnfA</td>
<td>3.19</td>
<td>5.6 E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF03613</td>
<td>DVU2797</td>
<td>Rnf complex, electron transfer protein</td>
<td>RnfB</td>
<td>2.17</td>
<td>3.2 E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF05080</td>
<td>DVU0263</td>
<td>type II cytochrome c ø</td>
<td>TmcA</td>
<td>0.48</td>
<td>2.2 E-04</td>
<td>0.40</td>
<td>4.2 E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF01067</td>
<td>DVU1286</td>
<td>Dsr complex, transmembrane protein</td>
<td>DsrP</td>
<td>0.31</td>
<td>3.5 E-06</td>
<td>0.33</td>
<td>1.7 E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF01068</td>
<td>DVU1287</td>
<td>Dsr complex, iron-sulfur binding protein</td>
<td>DsrO</td>
<td>0.48</td>
<td>3.9 E-04</td>
<td>0.35</td>
<td>1.1 E-07</td>
<td>2.09</td>
<td>6.1 E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF01069</td>
<td>DVU1288</td>
<td>Dsr complex, cytochrome c family protein</td>
<td>DsrJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>ORF</th>
<th>DVU</th>
<th>Description</th>
<th>mRNA</th>
<th>Fold Change</th>
<th>P Value</th>
<th>Percentage Change</th>
<th>Fold Change</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF01070</td>
<td>DVU1289</td>
<td>Dsr complex, iron-sulfur binding subunit Dsr</td>
<td>0.37</td>
<td>2.9 E-06</td>
<td>0.36</td>
<td>3.2 E-06</td>
<td>2.16</td>
<td>1.8 E-04</td>
</tr>
<tr>
<td>ORF01072</td>
<td>DVU1290</td>
<td>Dsr complex, membrane cytochrome b protein DsrM</td>
<td>0.29</td>
<td>6.1 E-07</td>
<td>0.38</td>
<td>7.3 E-05</td>
<td>2.36</td>
<td>1.6 E-02</td>
</tr>
<tr>
<td>ORF00341</td>
<td>DVU0848</td>
<td>Qmo complex, flavin protein QmoA</td>
<td>0.37</td>
<td>1.0 E-06</td>
<td>0.44</td>
<td>1.4 E-02</td>
<td>2.27</td>
<td>2.3 E-02</td>
</tr>
<tr>
<td>ORF00343</td>
<td>DVU0849</td>
<td>Qmo complex, flavin protein QmoB</td>
<td>0.46</td>
<td>8.7 E-03</td>
<td>0.46</td>
<td>8.7 E-03</td>
<td>2.36</td>
<td>1.6 E-02</td>
</tr>
<tr>
<td>ORF00345</td>
<td>DVU3143</td>
<td>iron-sulfur cluster binding protein OhcB</td>
<td>2.63</td>
<td>1.6 E-04</td>
<td>2.13</td>
<td>2.5 E-04</td>
<td>2.05</td>
<td>5.0 E-02</td>
</tr>
<tr>
<td>ORF04199</td>
<td>DVU3144</td>
<td>octaheme cytochrome c OhcA</td>
<td>2.05</td>
<td>5.0 E-02</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
</tr>
<tr>
<td>ORF00341</td>
<td>DVU0848</td>
<td>Qmo complex, flavin protein QmoA</td>
<td>0.37</td>
<td>1.0 E-06</td>
<td>0.44</td>
<td>1.4 E-02</td>
<td>2.27</td>
<td>2.3 E-02</td>
</tr>
<tr>
<td>ORF00343</td>
<td>DVU0849</td>
<td>Qmo complex, flavin protein QmoB</td>
<td>0.46</td>
<td>8.7 E-03</td>
<td>0.46</td>
<td>8.7 E-03</td>
<td>2.36</td>
<td>1.6 E-02</td>
</tr>
<tr>
<td>ORF00345</td>
<td>DVU3143</td>
<td>iron-sulfur cluster binding protein OhcB</td>
<td>2.63</td>
<td>1.6 E-04</td>
<td>2.13</td>
<td>2.5 E-04</td>
<td>2.05</td>
<td>5.0 E-02</td>
</tr>
<tr>
<td>ORF04199</td>
<td>DVU3144</td>
<td>octaheme cytochrome c OhcA</td>
<td>2.05</td>
<td>5.0 E-02</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
</tr>
<tr>
<td>ORF00078</td>
<td>DVU0693</td>
<td>molybdopterin oxidoreductase, transmembrane subunit</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
</tr>
<tr>
<td>ORF00079</td>
<td>DVU0693</td>
<td>molybdopterin oxidoreductase, transmembrane subunit</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
<td>2.45</td>
<td>8.9 E-03</td>
</tr>
<tr>
<td>ORF00336</td>
<td>DVU0846</td>
<td>adenylyl sulfate reductase , β subunit ApsB</td>
<td>0.49</td>
<td>4.9 E-04</td>
<td>2.47</td>
<td>5.7 E-03</td>
<td>2.47</td>
<td>5.7 E-03</td>
</tr>
<tr>
<td>ORF00338</td>
<td>DVU0847</td>
<td>adenylyl sulfate reductase , α subunit ApsA</td>
<td>0.29</td>
<td>6.0 E-04</td>
<td>2.25</td>
<td>2.8 E-02</td>
<td>2.25</td>
<td>2.8 E-02</td>
</tr>
<tr>
<td>ORF04933</td>
<td>DVU0172</td>
<td>thiosulfate reductase, iron-sulfur binding protein PhsB</td>
<td>2.14</td>
<td>1.2 E-04</td>
<td>0.42</td>
<td>1.1 E-05</td>
<td>0.42</td>
<td>1.1 E-05</td>
</tr>
<tr>
<td>ORF003292</td>
<td>DVU0819</td>
<td>iron-sulfur flavoprotein Isf</td>
<td>3.12</td>
<td>1.3 E-04</td>
<td>4.15</td>
<td>1.5 E-05</td>
<td>3.66</td>
<td>1.7 E-07</td>
</tr>
<tr>
<td>ORF02976</td>
<td>DVU2404</td>
<td>heterodisulfide oxidoreductase, subunit C HdrC</td>
<td>2.01</td>
<td>1.2 E-03</td>
<td>2.58</td>
<td>3.5 E-05</td>
<td>2.58</td>
<td>3.5 E-05</td>
</tr>
<tr>
<td>ORF03423</td>
<td>DVU2680</td>
<td>flavodoxin Fla</td>
<td>0.32</td>
<td>1.3 E-06</td>
<td>0.37</td>
<td>9.8 E-05</td>
<td>0.37</td>
<td>9.8 E-05</td>
</tr>
<tr>
<td>ORF00217</td>
<td>DVU0774</td>
<td>ATP synthase, F1 ε subunit AtpC</td>
<td>0.50</td>
<td>4.9 E-03</td>
<td>0.50</td>
<td>4.9 E-03</td>
<td>0.50</td>
<td>4.9 E-03</td>
</tr>
<tr>
<td>ORF00219</td>
<td>DVU0775</td>
<td>ATP synthase, F1 β subunit AtpD</td>
<td>0.43</td>
<td>1.9 E-03</td>
<td>0.43</td>
<td>1.9 E-03</td>
<td>0.43</td>
<td>1.9 E-03</td>
</tr>
<tr>
<td>ORF00220</td>
<td>DVU0776</td>
<td>ATP synthase, F1 γ subunit AtpG</td>
<td>0.37</td>
<td>1.4 E-04</td>
<td>0.37</td>
<td>1.4 E-04</td>
<td>0.37</td>
<td>1.4 E-04</td>
</tr>
<tr>
<td>ORF00223</td>
<td>DVU0777</td>
<td>ATP synthase, F1 δ subunit AtpA</td>
<td>0.29</td>
<td>7.9 E-04</td>
<td>0.29</td>
<td>7.9 E-04</td>
<td>0.29</td>
<td>7.9 E-04</td>
</tr>
<tr>
<td>ORF00224</td>
<td>DVU0778</td>
<td>ATP synthase, F1 δ subunit AtpH</td>
<td>0.46</td>
<td>5.2 E-03</td>
<td>0.46</td>
<td>5.2 E-03</td>
<td>0.46</td>
<td>5.2 E-03</td>
</tr>
<tr>
<td>ORF00226</td>
<td>DVU0779</td>
<td>ATP synthase, F0, B subunit, putative AtpF2</td>
<td>0.46</td>
<td>7.1 E-04</td>
<td>0.46</td>
<td>7.1 E-04</td>
<td>0.46</td>
<td>7.1 E-04</td>
</tr>
<tr>
<td>ORF00462</td>
<td>DVU0918</td>
<td>ATP synthase, F0, A subunit AtpB</td>
<td>0.32</td>
<td>2.5 E-07</td>
<td>0.32</td>
<td>2.5 E-07</td>
<td>0.32</td>
<td>2.5 E-07</td>
</tr>
<tr>
<td>ORF02747</td>
<td>DVU2784</td>
<td>L-lactate dehydrogenase Ldh</td>
<td>2.85</td>
<td>1.2 E-05</td>
<td>2.85</td>
<td>1.2 E-05</td>
<td>2.85</td>
<td>1.2 E-05</td>
</tr>
<tr>
<td>ORF02748</td>
<td>DVU2784</td>
<td>L-lactate dehydrogenase, FMN-dependent family LldD</td>
<td>4.29</td>
<td>1.7 E-10</td>
<td>0.36</td>
<td>3.5 E-02</td>
<td>0.36</td>
<td>3.5 E-02</td>
</tr>
<tr>
<td>ORF02749</td>
<td>DVU2784</td>
<td>Pyruvate-formate-lyase PfA</td>
<td>0.43</td>
<td>7.6 E-05</td>
<td>0.43</td>
<td>7.6 E-05</td>
<td>0.43</td>
<td>7.6 E-05</td>
</tr>
<tr>
<td>ORF02977</td>
<td>DVU2405</td>
<td>alcohol dehydrogenase Adh</td>
<td>2.21</td>
<td>1.3 E-02</td>
<td>2.21</td>
<td>1.3 E-02</td>
<td>2.21</td>
<td>1.3 E-02</td>
</tr>
</tbody>
</table>

Formate dehydrogenases

Enzymes involved in the reduction of sulfur oxo-anions

Electron transfer proteins

Oxidative stress responsive proteins

ATP synthase

Carbon metabolizing enzymes

1 mRNA abundance levels in cells grown in HS, PS, LT and P relative to mRNA levels in cells grown in LS
2 probability that the mRNA abundance remained unchanged
FIGURE LEGENDS

Figure 1- **Growth curves of* D. vulgaris.** □-LS; ○-HS; △-PS; ▲-P; ×-LT. Points are averages of two independent growth experiments.

Figure 2- **Distribution of up- and down-regulated genes in* D. vulgaris Hildenborough as a function of different growth conditions.** Only those genes with p-value ≤ 0.05 and a ratio value ≤ 0.5 and ≥ 2.0 are included in the plot.

Figure 3- **Comparative scheme of the bioenergetic pathways operative in* D. vulgaris grown in different conditions.** Energy and/or carbon sources are in a grey background. $[H]$ represents hydrogen equivalents. The pathway that accepts electrons from lactate oxidation or the pathway leading to the production of ethanol have not been elucidated. For the sake of simplicity the role of the membrane menaquinone pool is not considered.

Panel A- Growth with lactate or pyruvate and sulphate. Numbers correspond to the following enzymes or proteins: 1- Ech hydrogenase, 2- CO-dehydrogenase and associated hydrogenase, 3- Periplasmic hydrogenases, 4- Electron transfer complexes including Dsr and Qmo, 5- ATP synthase, 6- Alcohol dehydrogenase and other proteins of the pathway, 7- Sulphate reducing enzymes.

Panel B- Growth with hydrogen as electron donor and acetate/CO$_2$ as carbon sources. Numbers correspond to the following enzymes or proteins: 1- Ech hydrogenase, 3- Periplasmic hydrogenases, 5- ATP synthase, 6- Alcohol dehydrogenase and other proteins of the pathway, 7- Sulphate reducing enzymes, 8- Formate dehydrogenases, 9- Pool of periplasmic cytochromes c, 10- Transmembrane electron transfer complexes including Tmc.
FIGURES

Figure 1:

![Graph showing growth conditions over time](image)

Figure 2:

![Bar chart showing number of genes](image)
Figure 3: