DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

PDF Version Also Available for Download.

Description

Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint ... continued below

Creation Information

Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas et al. January 30, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-1942E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/960431 | External Link
  • Office of Scientific & Technical Information Report Number: 960431
  • Archival Resource Key: ark:/67531/metadc929377

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 30, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 18, 2016, 2:35 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas et al. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints, report, January 30, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc929377/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.