Bioinformatics for Genome Analysis

PDF Version Also Available for Download.

Description

Nesbo, Boucher and Doolittle (2001) used phylogenetic trees of four taxa to assess whether euryarchaeal genes share a common history. They have suggested that of the 521 genes examined, each of the three possible tree topologies relating the four taxa was supported essentially equal numbers of times. They suggest that this might be the result of numerous horizontal gene transfer events, essentially randomizing the relationships between gene histories (as inferred in the 521 gene trees) and organismal relationships (which would be a single underlying tree). Motivated by the fact that the order in which sequences are added to a multiple ... continued below

Creation Information

Olsen, Gary J. June 30, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Nesbo, Boucher and Doolittle (2001) used phylogenetic trees of four taxa to assess whether euryarchaeal genes share a common history. They have suggested that of the 521 genes examined, each of the three possible tree topologies relating the four taxa was supported essentially equal numbers of times. They suggest that this might be the result of numerous horizontal gene transfer events, essentially randomizing the relationships between gene histories (as inferred in the 521 gene trees) and organismal relationships (which would be a single underlying tree). Motivated by the fact that the order in which sequences are added to a multiple sequence alignment influences the alignment, and ultimately inferred tree, they were interested in the extent to which the variations among inferred trees might be due to variations in the alignment order. This bears directly on their efforts to evaluate and improve upon methods of multiple sequence alignment. They set out to analyze the influence of alignment order on the tree inferred for 43 genes shared among these same 4 taxa. Because alignments produced by CLUSTALW are directed by a rooted guide tree (the denderogram), there are 15 possible alignment orders of 4 taxa. For each gene they tested all 15 alignment orders, and as a 16th option, allowed CLUSTALW to generate its own guide tree. If we supply all 15 possible rooted guide trees, they expected that at least one of them should be as good at CLUSTAL's own guide tree, but most of the time they differed (sometimes being better than CLUSTAL's default tree and sometimes being worse). The difference seems to be that the user-supplied tree is not given meaningful branch lengths, which effect the assumed probability of amino acid changes. They examined the practicality of modifying CLUSTALW to improve its treatment of user-supplied guide trees. This work became ever increasing bogged down in finding and repairing minor bugs in the CLUSTALW code. This effort was put on hold as we feel that our other proposed approaches will ultimately be better.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER63201-1
  • Grant Number: FG02-01ER63146
  • DOI: 10.2172/956994 | External Link
  • Office of Scientific & Technical Information Report Number: 956994
  • Archival Resource Key: ark:/67531/metadc929340

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2005

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 22, 2016, 9:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 20

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Olsen, Gary J. Bioinformatics for Genome Analysis, report, June 30, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc929340/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.