
Modelica-based Modeling and Simulation to
Support Research and Development in Building

Energy and Control Systems

Michael Wetter, Lawrence Berkeley National Laboratory

September 2009

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

Modelica-based Modeling and Simulation to Support

Research and Development in Building Energy and Control

Systems

Michael Wetter

Lawrence Berkeley National Laboratory

Environmental Energy Technologies Division

Building Technologies Program

Berkeley, CA

September 30, 2009

Abstract

Traditional building simulation programs possess attributes that make them dif-
ficult to use for the design and analysis of building energy and control systems and
for the support of model-based research and development of systems that may not
already be implemented in these programs. This paper presents characteristic fea-
tures of such applications, and it shows how equation-based object-oriented modeling
can meet requirements that arise in such applications. Next, the implementation of
an open-source component model library for building energy systems is presented.
The library has been developed using the equation-based object-oriented Modelica
modeling language. Technical challenges of modeling and simulating such systems
are discussed. Research needs are presented to make this technology accessible to
user groups that have more stringent requirements with respect to the numerical
robustness of simulation than a research community may have. Two examples are
presented in which models from the here described library were used. The first exam-
ple describes the design of a controller for a nonlinear model of a heating coil using
model reduction and frequency domain analysis. The second example describes the
tuning of control parameters for a static pressure reset controller of a variable air
volume flow system. The tuning has been done by solving a non-convex optimization
problem that minimizes fan energy subject to state constraints.

Keywords:

building simulation; equation-based modeling; rapid prototyping; Modelica; controls

1

1 Introduction

To design and operate energy efficient buildings, it is important to properly account for
the dynamic system performance over a wide range of time scales and operating con-
ditions. At the time scale of hours to days, the system dynamics determine how much
energy can be stored passively or actively to exploit natural sources for heating and
cooling. At the time scale of minutes or even seconds, the system dynamics determine
whether equipment is cycling, which can negatively impact its energy performance and
may cause premature equipment failure. Also, the performance of certain equipment can
peak at part load and degrade at low and high load. To design control algorithms that
exploit such behavior in order to increase system-level efficiency, simulation models need
to reflect the change in efficiency at various steady-state and dynamic operating condi-
tions. Temporally averaging the performance of cycling equipment, as is customary in
hourly building simulation programs, is not always satisfactory as it does not account for
the high cycling frequency which can degrade the equipment performance. An example
is a direct evaporating cooling coil (DX coil) where the condensate may evaporate into
the supply air when the compressor is switched off [Henderson and Rengarajan, 1996].

In industrial research, model-based system engineering is increasingly used to reduce
product development cycles and to fix errors early in the design. Such a process often
involves experts from different disciplines who need to integrate models of various domains
to analyze their interaction or to redesign components in a way that increases system-level
efficiency or controllability [Banaszuk et al., 2007]. Such processes require models that
can be used beyond time-domain simulation, for example in conjunction with frequency
domain analysis (to analyze stability and design beneficial dynamic behavior) or with
optimization algorithms (to optimize the design or operation).

Using building simulation programs for such applications leads to new requirements
for modeling and simulation tools. For example, to support the invention of new systems
for space conditioning, building simulation programs need to allow a scientist to quickly
add new models and use the models within rapid prototyping processes. For multidis-
ciplinary research, it needs to be possible to integrate different models that have been
developed concurrently by different domain experts who are part of a multidisciplinary
research team. For controls design and analysis, building simulation programs need to
represent the dynamic behavior of components and their interaction within a system.
For generating a simulation model of an HVAC system and its controls from a Building
Information Model, building simulation programs should be able to represent any HVAC
and controls configuration that can be built in reality. This would allow using any valid
Building Information Model that contains not only building envelope data but that may
in the future also contain data for HVAC components, their system configuration and
the specification of control algorithms.

We recognize that vendors may not release the performance data and control algo-
rithms at a level of detail needed for a proper simulation of the dynamic system per-
formance. In such situations, one can still use the pragmatic approach of implementing
simplified equipment performance curves and control algorithms with equation-based

2

modeling languages, using the scarce information available, as is frequently done in to-
day’s building simulation programs.

2 Traditional Building Simulation Programs

To better distinguish the modeling and simulation technique described in this paper from
the way that building simulation programs are typically written, we introduce the term
traditional building simulation programs. By traditional building simulation programs, we
mean building simulation programs that are written using an imperative language, such as
FORTRAN, C and C++. Examples of traditional building simulation programs include
DOE-2, ESP-r and EnergyPlus (Winkelmann et al. [1993]; Clarke [2001]; Crawley et al.
[2001]). In such programs, a developer writes sequences of computer instructions that
assign values to variables in a predefined order of execution. Typically, such programs
mix code that describes the physical process with code for data management and for
numerical solution methods.

Traditional building simulation programs have in general not been designed based
on the above requirements. Meeting these requirements requires modeling techniques
that are different from the techniques used in these programs, in which the semantic
gap between simulation model and actual component can be large and which often mix
code for expressing the physical behavior with code for data management and numerical
solution methods. A reason for this semantic gap is that models in traditional building
simulation programs are written in a way that was motivated by how computers process
instructions. For example, when implementing a physical model, a program developer
sorts and manipulates the physical equations based on what variables are known (the
input) and what variables need to be computed (the output). Then, the program devel-
oper writes causal, sorted variable assignments and implements them in a source code.
This source code may call other program procedures, thereby transferring the locus of
control until the response of a subsystem to its input variables is computed. During this
process, program procedures may set flags to request from the solver the re-simulation
of a subsystem. Clearly, this is not how one would state the physical laws that govern
constraints between component interface variables and how one would describe how com-
ponents interact with each other. Rather, it was the only approach for writing building
simulation programs at a time when more modern tools for modeling, symbolic algebra,
numerical solution and code generation were in their infancy.

3 Limitations of Traditional Building Simulation Programs

In traditional building simulation programs, component models frequently integrate their
own numerical solver and mix program flow logic with equations that simulate the phys-
ical behavior. This leads to a program code that is hard to maintain and for which
it is difficult to add new models. The nested solvers can also lead to significant nu-
merical noise in the simulation results that can make the use of optimization programs

3

difficult [Wetter and Wright, 2004; Wetter and Polak, 2004b]. Furthermore, the lack of
separation between models, data and solvers makes it hard to integrate models from
different disciplines for co-simulation such as in Trcka et al. [2006], Trčka et al. [2007]
and Wetter and Haves [2008]. Since the majority of building simulation programs do not
model the dynamics of HVAC systems and sometimes implement an idealized controller
directly in a component model, many standard control sequences such as the ones de-
scribed by ASHRAE [2006] and CIBSE [2000] are difficult if not impossible to model.
For example, in EnergyPlus, fan coil units are controlled based on the zone heating and
cooling load and not based on a zone thermostat. This makes it hard to use such models
in conjunction with models of control systems.

As part load performance and system controls become of increasing importance in
very low energy buildings, energy simulations need to properly resolve the non-linear
dynamic behavior of building energy and their control systems, and capture the domi-
nant dynamics that may lead to equipment short-cycling. When developing models for
such systems, one obtains systems of differential equations where the time constants can
vary significantly among different components. These systems of differential equations
may be coupled to algebraic equations and to difference equations. For the efficient
numerical solution of such systems, algorithms for symbolic computer algebra (such as
partitioning and tearing) and implicit numerical solvers for differential equations should
be used [Cellier and Kofman, 2006].

With respect to composing HVAC systems from component models, we note that in
some traditional building simulation programs, the arrangement of HVAC and control
components is governed by composition rules (that define how components can be assem-
bled to form a system) which are not devised based on how actual HVAC components
can be connected to form a system. Rather, the composition rules were defined such
that an efficient numerical solution could be obtained in a program architecture that
distributes solvers to individual components and subsystems and that does not make use
of symbolic manipulations. This led to program architectures with sequential simulation
of loads, systems and plants, or to program architectures that are based on fluid loops.
The consequence is that translating an HVAC system from a Building Information Model
to an energy simulation program is only possible if the HVAC system instantiation in the
BIM has been done such that the component connectivity conforms to the composition
rules of the energy simulation program. This is for example followed in the approach
described by Bazjanac and Maile [2004]. While this approach may present a working
solution for traditional HVAC systems and controls, it presents a challenge for the use of
BIM for non-standard HVAC systems and to represent novel control algorithms.

4

4 Building System Library

Due to these limitations, we started an open-source development of a new component
library for building energy systems using the equation-based object-oriented modeling
language Modelica [Mattsson and Elmqvist, 1997]. For early applications, we are pri-
marily interested in:

• offering innovative companies and researchers a platform to stimulate innovations
in energy-efficient building systems;

• enabling virtual rapid prototyping to evaluate different concepts rapidly so that
promising alternatives can be identified for further refinement and product devel-
opment;

• enabling researchers to quickly add models of emerging technologies into the sim-
ulation environment to do performance assessment; and

• enabling controls engineers to extract different subsystem models from models that
are used for the design of the building energy system. These models may then be
used within a feedback controls design process, or they may be embedded within
building control systems for model-based controls, fault detection, and diagnostics.

In the long term, we envision the models being used in a work flow that automatically
generates a simulation model from a BIM that includes a modular definition of HVAC
systems and control algorithms.

Modelica has been applied earlier for building energy modeling applications but an
extensive library with both steady-state and dynamic component models for building
energy systems is not yet available. Other Modelica development has been reported
by Merz [2002] and Felgner et al. [2002] who describe the library ATPlus for thermal
building simulation. Hoh et al. [2005] expanded the components of the ATPlus library
to include a room model with heat exchangers that are embedded in wall constructions.
Nytsch-Geusen et al. [2005] developed a hygrothermal building model as part of a Model-
ica library for multizone building heat and mass transfer analysis. A multi-zone thermal
building model is described in Wetter [2006a] and a multizone airflow model is described
in Wetter [2006b].

4.1 Characteristics of the Target Applications

To further illustrate why we are interested in a new approach for modeling and simulation
of building systems, and to rationalize our selected implementation, we will now discuss
some characteristics of the above applications:

Efficient numerical solution: To discuss the computation time, consider the equa-
tion

seconds

program
=

(
instructions

program

) (
clocks

instruction

) (
seconds

clocks

)
(1)

5

that describes the time needed to execute a program as the product of the number of
instructions of the program, times the average clock cycles needed to process an instruc-
tion, times the seconds that elapse per clock cycle. As application developers, we can
influence the first two terms on the right hand side, whereas the third is given by the
processor clock.

The instructions to be executed by the program can be reduced by selecting efficient
symbolic and numerical algorithms and a good software structure. With regard to nu-
merical algorithms, we note that in building energy systems, time constants vary between
seconds for feedback control to days for energy storage. To ensure stability, to control
the error of the numerical solution and for computational efficiency, solving such systems
requires implicit integration algorithms with adaptive step sizes [Hairer and Wanner,
1996; Cellier and Kofman, 2006]. This, in turn, can lead to large linear and nonlinear
systems of equations that need to be solved simultaneously. Since the computation time
of linear and nonlinear solvers is typically proportional to n2 to n3, where n denotes the
number of unknowns that are solved for simultaneously, it is generally advantageous to
reduce n. For equation-based languages, this can be done by symbolically manipulating
the system of equations using methods such as partitioning, tearing and inline integra-
tion [Cellier and Kofman, 2006; Elmqvist et al., 1995; Bunus and Fritzson, 2004], which
are similar to the methods used in SPARK [Sowell et al., 1986; Sowell and Haves, 2001;
Wetter et al., 2008]. However, traditional building simulation programs use imperative
programming, such as procedural code, that defines the sequences of computer instruc-
tions as opposed to only the logic of the computation as a declarative language would
do.1 This imperative model formulation does not allow the use of the above symbolic
manipulations.

The number of cycles it takes to process an instruction can be reduced by using al-
gorithms that take advantage of parallel hardware. Exploiting parallelism in hardware
becomes increasingly important because the third term on the right hand side is not
expected to decrease significantly in the future [Asanovic et al., 2006]. Increasing paral-
lelism is therefore the primary method of reducing the computing time. Taking advantage
of this technological development requires changes in the software architecture in order to
implement libraries that exploit parallelism, such as the ones described by Vuduc et al.
[2005]. It also requires adding parallelization constructs to higher level code. The fact
that the seconds/clock are not decreasing much but instead the hardware is becoming
increasingly parallel has far reaching consequences for the software community (see for
example Asanovic et al. [2006]). Taking advantage of these technological changes is eas-
iest if programs are designed such that they separate concerns for model formulation,
symbolic processing, data management and numerical solution. This allows using highly
efficient libraries for computational kernels (i.e., computational tasks that are common
to many applications such as solvers for linear systems of equations) that can be updated
with few changes to the application program as the hardware changes and the state of the

1For example, the statement Q1:=-Q2-Q3; is imperative and describes that Q1 is to be computed by
assigning the sum of -Q2 and-Q3. A declarative statement may have the form 0=Q1+Q2+Q3; which only
describes how the three variables are related, but it does not specify what computer instructions need to
be done to compute one from the other two.

6

art in the scientific computing community advances. It is questionable that traditional
building simulation programs, which contain hundreds of thousands of lines of code and
whose software architecture has not been designed for parallel computation, can take
effective advantage of this development.

Management of complexity: The flat model representation that can typically be
found in today’s building simulation programs is not well suited to manage the complexity
of large system models. Instead, a modeling language should allow for the management
of the complexity of building system models by providing means for composing system
models hierarchically (to encapsulate subsystem models), for object-inheritance (to reuse
existing basic models and refine their implementation), for object-instantiation (to use
and parameterize an object in a simulation model) and for polymorphism (to change the
model semantics based on the environment that the model is exposed to). There should
also be a capability that allows a model builder to assemble system models as one would
connect components in an actual system, with acausal connections that link model ports
that carry physical quantities such as mass flow rate, species concentration, pressure and
temperature. These requirements are part of the object-oriented modeling paradigm that
is described by Cellier [1996] and realized in the Modelica language.

Simulation of dynamic effects: Time domain simulation of equipment that
switches on and off by averaging its performance over a fixed time step can lead to incor-
rect prediction of the equipment performance. For example, a DX coil that short-cycles
at high frequency has a lower latent heat capacity compared to the same coil that cycles
at lower frequency because the water film that deposits on the coil can evaporate into
the supply air stream when the compressor is switched off [Henderson and Rengarajan,
1996]. Furthermore, models that time-average the dynamic performance are not appli-
cable for analyzing the robustness and dynamic performance of feedback control loops.
Time-averaging the dynamics also limits the use of models in operation for model-based
controls, fault detection and diagnostics.

Use of models beyond time domain simulation: Models can serve more appli-
cations than just time domain simulation. For example, control theory for linear time
invariant systems provides a rich framework for systems of the form

ẋ(t) = Ax(t) + B u(t), (2a)

y(t) = C x(t) + D u(t), (2b)

where A,B,C and D are matrices with constant coefficients, x(·) is the state vector,
u(·) is the control input vector and y(·) is the output vector. In Section 4.6.1 we show
how such theory can be used in conjunction with a nonlinear Modelica model for a heat
exchanger to design a controller.

Use of models in conjunction with optimization algorithms: To prove con-
vergence of optimization algorithms to a stationary point, the cost function needs to be
once continuously differentiable. There is a large class of optimization algorithms, some
of which do not require knowledge of the gradient, that can be used to efficiently solve
such problems [Polak, 1997; Kolda et al., 2003; Polak and Wetter, 2006]. It is generally
accepted in the optimization community that at least for the final iterates, the simula-
tions need to be done with high enough accuracy of the numerical solvers to make the

7

numerical noise in the cost function negligible. This has been shown to be difficult with
building simulation programs that have several solvers spread throughout their code, of-
ten without giving the user the means to use tight solver tolerance [Wetter and Polak,
2004b; Wetter and Wright, 2004] or to adaptively adjust them during the simulation to
reduce the computation time such as in Wetter and Polak [2004a].

Generation of a simulation model from a BIM: We envision using a Building
Information Model to generate a model that can be used for energy simulation from a
component-based BIM representation of the building, its HVAC system and its control
system. To accomplish this, it seems to be most natural to encapsulate models for simu-
lation in the same way as components are delivered to a building. Furthermore, the rules
that describe how component models can be connected to each other to form a system
model should be as close as possible to the rules that describe how actual components
can be connected to each other.

In view of these characteristics, we suggest revisiting the current approach of writing
building simulation programs. Instead of writing programs that describe how a building
energy system should be simulated, i.e., in what sequence equations are evaluated, how
variables are propagated from one routine to another and how equations are being solved,
one should write models that define the algebraic and dynamic relationships between
their interface variables, and compose system models hierarchically. How to generate a
computer code for simulation from these systems of equations should be left to software
that manipulates the equations symbolically and links them to numerical solvers. Clearly,
this poses formidable challenges to symbolic and numerical solvers. It is the subject of the
research described here to explore a model formulation that allows robust and efficient
numerical simulations, and to identify research and development needs to make equation-
based modeling accessible to a larger community than simulation specialists.

4.2 Implementation

To implement our modeling library we selected the Modelica language. Modelica is a free
open-source language for object-oriented equation-based modeling of systems that are
described by differential, difference and algebraic equations. Its broad support in many
industrial domains positions it well to become the de-facto standard for modeling of dy-
namic systems. Thus, we believe it has the potential to become a language that allows
exchanging models among users of different engineering domains, including building tech-
nologies, that may use different modeling and simulation environments, similar to what
was attempted by Sahlin and Sowell [1989] with the Neutral Model Format language.2

We note that equation-based modeling and simulation was introduced to the building
simulation community close to two decades ago [Sowell et al., 1986; Sahlin and Sowell,
1989; Charlesworth et al., 1991; Klein and Alvarado, 1992]. What is different from earlier
efforts is that Modelica is supported by various industrial sectors which broadens the re-

2Within the ASHRAE Technical Committee 4.7, the prospect of Modelica was already mentioned
in 1998 when Sowell reported on this language. The committee reported that Modelica could eventually
subsume NMF but it was decided to press for NMF and monitor the Modelica progress [Spitler, 1998].

8

sources available to develop the language and the modeling and simulation environments.
In addition, there have been various advances in symbolic and numerical methods as well
as in computer science and computer hardware that make the approach more feasible
today.

Before discussing the architecture of our library, we present a brief overview of Mod-
elica and refer for an in-depth discussion to Mattsson and Elmqvist [1997], Tiller [2001]
and Fritzson [2004]. In 1996, a consortium was formed to develop the Modelica lan-
guage. The goal of the consortium is to combine the benefits of existing modeling lan-
guages and to define a new uniform language for model representation by creating a
modeling language that allows modeling systems that involve multiple engineering do-
mains such as electrical engineering, thermodynamics, heat transfer, fluid dynamics and
controls [Fritzson and Engelson, 1998]. Modelica is an equation-based, acausal, object-
oriented modeling language that is designed for component-oriented modeling of dynamic
systems. Models are described by differential equations, algebraic equations and discrete
equations. Using standardized interfaces, the mathematical relations of a model between
its interface variables are encapsulated, and the model can be represented graphically by
an icon. This encapsulation together with the standardized interface variables facilitate
model reuse, model exchange and connecting component models to system models using
a graphical or textual editor. Since Modelica is a standardized language, it is a promis-
ing choice for ensuring that models can indeed be shared and exchanged by a large user
community.

A tenet of Modelica is that each component should represent a physical device with
physical interface ports. For ports of opaque heat conductors, interface variables are
heat flow and temperature, and for an element that transports a fluid, the port vari-
ables are pressure, species flow and enthalpy. This encapsulation together with acausal
models enables a graphical, input-output free model construction. In a schematic model
diagram of a physical system, icons correspond to actual components or subsystems and
encapsulate the equations that define the physics of the subsystem. Lines between the
icons impose interface equations to conserve flow and to equate state variables, or they
may propagate signals in a control system.

Models can be encapsulated hierarchically. This facilitates managing the complexity
of large systems, reusing subsystem models and testing of subsystem models before they
are assembled into a large system model that may be difficult to debug. To reduce
the model development time, the object-oriented model construction in Modelica allows
experts of different domains, such as an HVAC engineer and a controls engineer, to model
their respective process, and later interface the models to analyze the complete system.
This effectively allows concurrent, as opposed to sequential, model building.

Modelica libraries for multi-domain physics (http://www.modelica.org/libraries/)
include models for control systems, for thermal systems, for electrical systems and for
mechanical systems, as well as for fluid systems and different media [Elmqvist et al.,
2003; Casella et al., 2006]. Because the libraries use standardized interfaces, models
from different libraries can be used within the same system model. An example of such
a standardized interface is the HeatPort connector of the Modelica Standard Library
which defines a connector with temperature and heat flow. It is implemented by the

9

http://www.modelica.org/libraries/

following lines of Modelica code:

1 p a r t i a l connector
2 Modelica . Thermal . HeatTransfer . I n t e r f a c e s . HeatPort
3 ”Thermal por t f o r 1−D heat t r an s f e r ” ;
4 SI . Temperature T
5 ”Port temperature ” ;
6 f l ow SI . HeatFlowRate Q flow
7 ”Heat f l ow ra t e (p o s i t i v e i f f l ow in g in t o the component) ” ;
8 end HeatPort ;

On line 6, the type prefix flow declares that all variables connected to Q flow need to
sum to zero. For example, if two HeatPorts are connected, the relationship T1 = T2

and the conservation equation Q̇flow,1 + Q̇flow,2 = 0 are generated. This connector can
then be instantiated to define the interface in a one-dimensional heat transfer element
with no energy storage. In Modelica’s thermal library, such a heat transfer element is
implemented as

1 p a r t i a l model Element1D
2 ”Par t i a l heat t r an s f e r e lement wi th two HeatPort connectors
3 t ha t does not s t o r e energy ”
4 SI . HeatFlowRate Q flow ”Heat f l ow ra t e from port a−>por t b ” ;
5 SI . Temperature dT ” por t a .T−por t b .T” ;
6 pub l i c
7 HeatPort po r t a ;
8 HeatPort por t b ;
9 equat ion

10 dT = por t a .T − port b .T;
11 po r t a . Q flow = Q flow ;
12 port b . Q flow = −Q flow ;
13 end Element1D ;

Lines 4 and 5 contain the declaration of the variables Q̇ and ∆T that are typically com-
puted in a one dimensional heat transfer element. Lines 7 and 8 instantiate the HeatPort
connector to expose to the outside of this model the port temperatures port a.T and
port b.T, as well as the port heat flow rates port a.Q flow and port b.Q flow. The
equations on line 10 to 12 define the relationships between the variables of the two
HeatPort connectors and the variables of the partial model Element1D. Note that Element1D
does not declare a relation between the heat flow rate and the temperatures, as this re-
lation is different for conduction, convection or radiation. Because this relation is not
specified, the model is declared partial to indicate that it can be extended by other
models to refine its implementation, but that it cannot be instantiated as it does not
define its semantic. To implement a thermal conductor, the above partial model can be
extended as follows:

1 model ThermalConductor
2 ”Lumped thermal e lement
3 t r an s po r t i n g heat wi thout s t o r in g i t ”
4 extends I n t e r f a c e s . Element1D ;
5 parameter SI . ThermalConductance G

10

6 ”Constant thermal conductance” ;
7 equat ion
8 Q flow = G∗dT ;
9 end ThermalConductor ;

This thermal conductor model can then be encapsulated in a graphical icon using draw-
ing elements that are part of the language standard, and hence, can be interpreted by
different Modelica modeling environments. By using a different parameter declaration
on line 5 and a different equation on line 8, the semantics can be changed to represent
other one-dimensional heat transfer elements such as a model for long-wave radiation be-
tween two surfaces. Note that the above code is not pseudo-code, but rather a complete
implementation of a heat conductor in the Modelica language. (For simplicity, optional
graphical annotations that can be interpreted by a graphical model editor and optional
model documentation in html format have been omitted.) Here, a model developer only
declared the variables and the constraints between heat flow rate and temperatures.
Whether the model will solve for the heat flow rate or for a port temperature will be
determined by a code generator that analyzes the overall simulation model in order to
determine a numerically efficient sequence of computations.

Modelica is a language that defines models but it cannot be executed directly. To
create executable code, a Modelica simulation environment translates a Modelica model
to a programming language such as C and links it to numerical solvers. See for example
Cellier and Kofman [2006] for a description of algorithms that are typically used in such
a process.

The Software Component Model that is embodied in the Modelica language enables
a flexible reuse of models. The Software Component Model consists of components, a
connection mechanism and a component framework [Fritzson, 2004]. Components are
connected using Modelica’s connection mechanism. This can be visualized in connection
diagrams. The component framework realizes components and connections and ensures
that communication works over the connections. Connectors can contain physical vari-
ables such as temperature and heat flow rate, which are typically implemented using
acausal variables. They can also contain signals such as a control input which are typ-
ically implemented using causal variables, or they can be composite and involve causal
and acausal variables. There are several connectors defined in the Modelica Standard
Library, and the design is such that all independent variables that are necessary to define
the desired effects in a real interface are part of a connector.

The Software Component Model that is embodied in Modelica allows connecting
models as one would connect real components with each other. Therefore, if models are
encapsulated the same way as components are encapsulated in a Building Information
Model, a one-to-one translation between a BIM and an energy simulation model can be
done. With many of today’s building simulation programs, this is not possible because
building simulation programs impose rules for how component models can be connected
to form a system model, and these rules are typically more restrictive than how actual
components can be connected to form an HVAC system. An example of such a situation

11

double-skin

façade
room

economizer

double-skin

façade
room

coil

economizer economizer

coil

Figure 1: Schematic view of an HVAC system with exhaust air through a double-skin
façade (left-hand side) and implementation in the EnergyPlus whole building simulation
program (right-hand side).

is shown in Figure 1. The figure illustrates a cooling and ventilation system in which
components are connected in a way that cannot be directly represented in the EnergyPlus
whole building simulation program. The left-hand side of the figure shows the schematic
view of the actual system in which the room return air flows through an economizer and
then into a double-skin façade from which it is exhausted to the outside by the exhaust
air fan. The right-hand side of the figure shows the schematic view of the model with the
modifications that were needed to simulate it in EnergyPlus. In particular, an additional
economizer had to be added, and the exhaust air fan had to be placed in the supply air
stream. This was needed as EnergyPlus does not allow connecting two thermal zones,
one for the room and one for the double-skin façade, with a flow path that contains the
economizer. While an expert modeler may be able to make such modeling decisions, it
would be impractical to write a BIM translator that allows such special HVAC system
configurations. However, in modular modeling languages such as Modelica, a direct
implementation of the actual system is possible as components can be connected in any
way as long as the port variables are compatible.

4.3 Base Class for Library

In the Modelica Standard Library, there are two implementations for fluid flow models:
the packages Modelica.Thermal.FluidHeatFlow and Modelica.Fluid [Casella et al.,
2006; Franke et al., 2009a].

The package Modelica.Thermal.FluidHeatFlow has been developed under the as-
sumption that the mixture concentration remains constant, that the medium does not
change phase and that the medium properties are constant. For many building HVAC

12

applications, these assumptions are too restrictive since, for example, change in air hu-
midity or pollutant concentration is often of interest. The package Modelica.Fluid is
not based on these assumptions. Instead, models in the package Modelica.Fluid in-
stantiate a medium model that provides standardized variables and interfaces to medium
property functions such as for density or viscosity. Medium models can range in their
fidelity from single-phase, single-substance, constant property media to detailed multi-
phase, multi-substance media such as air with water in liquid and vapor phase, depending
on the water vapor and saturation pressure. Since component models are implemented
separately from the medium models, the same component models can be used for different
media. Because of this flexibility, our library is based on the package Modelica.Fluid.
A goal of Modelica.Fluid is that every component can be connected in an arbitrary
way, and components such as pipes can be reversed without affecting the performance of
the simulation model.

Modelica.Fluid provides a set of component models for one-dimensional thermo-
fluid flow in pipe networks. However, the models are not meant to cover all application
areas but rather serve as examples for how to implement additional components. In our
library, we used some of the same base classes, reused certain models and added additional
models that are more specifically targeted towards building HVAC system modeling and
simulation. For example, while Modelica.Fluid provides spatially discretized heat ex-
changer models with detailed models for fluid flow friction and convective heat transfer
coefficients, we implemented additional heat exchanger models that are more applicable
for modeling and simulation of building HVAC systems during early design when little
detailed component data are available.

4.4 Buildings Library Packages

We organized our Buildings library into the packages listed below. Additional packages
including models that link during the simulation to the Building Controls Virtual Test
Bed [Wetter and Haves, 2008], and hence to EnergyPlus, will be added later. The library
is available from http://simulationresearch.lbl.gov.

BaseClasses This package contains base classes that are used by several models of
this library such as a basic icon that may be extended by a model to provide a
uniform graphical model representation. Note that other packages may have their
own sub-package BaseClasses that may provide basic models that are used within
the corresponding package only. For example, the package Fluid has a package
Fluid.BaseClasses that provides a model for a flow resistance that is used by a
fixed flow resistance model and by a valve model.

Controls This package contains models of continuous time and discrete time con-
trollers.

Fluid This package contains models for fluid flow components such as fixed flow resis-
tances, two- and three-way valves with various opening characteristics, air dampers

13

http://simulationresearch.lbl.gov

and fans. There are also models for thermal energy storage tanks, furnaces and
measurement sensors.

Fluid.HeatExchangers Models in this package include various heat exchanger mod-
els including steady-state heat exchangers with fixed effectiveness, dynamic heat
exchangers that are discretized along the two flow paths and a simple heater or
cooler whose heat transfer rate is proportional to a control input. There are also
models for cooling towers.

Fluid.MassExchangers This package contains a model for a humidifier and a heat
and moisture exchanger.

HeatTransfer This package contains models for heat transfer elements such as a
finite volume method for heat conduction in solids.

Media This package contains media models that can be used in addition to the
models provided by Modelica.Media. Our models are in general less detailed to
reduce simulation time. For example, the package contains a model for moist air
with constant specific heat capacity of air and water vapor, and models for dry and
moist air with a simplified implementation of the gas law. There is also a model
for water with constant density.

Utilities This package provides utility classes that are used by models in several
packages. For example, there are psychrometric models. There are also models that
facilitate writing results to output files to augment the output capabilities provided
by the simulation environment and by the Modelica Standard Library. In addition,
this package contains functions that approximate some non-differentiable functions
by approximations that are differentiable everywhere and whose derivatives are
continuous. Such functions may be used by a model developer to increase numerical
efficiency.

4.5 Technical Difficulties

The formulation of dynamical systems using equation-based languages typically leads to
large sparse systems of hybrid differential algebraic equations3. A direct solution of these
systems is not practical. Instead, the following steps are typically involved to create a
computationally efficient simulation program:

1. The user constructs the model equations using a graphical editor, a textual editor,
or a model generator.

2. State variables are selected and the equations are symbolically manipulated to
reduce high index differential algebraic equation systems.

3By hybrid differential algebraic systems of equations, we mean differential and difference equations
that are coupled to continuous and discrete algebraic equations. An example is a chiller control that
may be expressed as a state machine that is linked to a discrete time controller for a mechanically cooled
building, which may be described by differential and algebraic equations.

14

3. Block lower triangulation and tearing are used to reduce the dimensionality of the
linear and nonlinear system of equations.

4. Program code is generated, compiled and linked to libraries that contain numerical
solvers.

5. The hybrid differential algebraic equation systems are solved to find consistent
initial conditions.

6. The equations are integrated over time.

Steps 2 to 6 can be done automatically without user intervention for simple systems,
but they may require user intervention for more complex building energy system models.
In step 1, a model builder makes the decision of what physical phenomena are to be
included in the model. Here, the level of modeling detail is selected based on the process
that should be investigated and the availability, or uncertainty, of the process input
data. To guide an algorithm in step 2, a model builder can give hints to a symbolic
processor to select state variables and/or to tear equation systems. For example, for a
thermodynamic state, either temperature or enthalpy may be used as a state variable, but
selecting temperature may lead to nonlinear equations that need to be solved numerically,
while enthalpy may be expressed as an explicit function of temperature. Such hints may
be embedded in a model library. Based on our experience, for building energy and control
systems, step 5 can be challenging. Here, a user can give guess values to aid the numerical
solver in finding consistent initial conditions. Finding proper settings can in some cases
require trial and error even for experienced users.

The need for providing good initial guesses currently presents a risk for making
equation-based, component-oriented modeling available to a large user base that is not
trained in this skills. It also presents a risk to use this technology in conjunction with code
generators that may for example process a BIM to generate a simulation model for per-
formance assessment, or to use such programs during the operation of the building when
they need to run unattended. Possible risk mitigation includes advances in symbolic and
numerical methods, embedding good guess values in model libraries, and further research
in how models should be formulated to ensure fast and robust numerical simulation. With
respect to robust numerical simulation, the current redesign of the Modelica.Fluid li-
brary shows promising initial results. Since version 1.0 of Modelica.Fluid, the library
has a new implementation for handling flow reversal in flow networks [Franke et al.,
2009b]. The new implementation leads in flow networks to residual equations that are
continuous and often differentiable. In the past, these equations were often discontinu-
ous in the iteration variables which frequently caused numerical problems. While further
experiments on large and realistic benchmarks are still pending, the initial experiments
show significant improvements over the previous implementation in terms of their an-
alytical properties (smoothness of the nonlinear system of equations), and in terms of
their numerical performance in computing consistent initial conditions and integrating
the equations in time.

We note that solvers in traditional building simulation programs often fail to converge
too. A common practice in such cases is to freeze the iteration variable, accept the non-

15

convergent solution and proceed to the next time step. However as pointed out above, this
can cause large numerical noise that can lead to incorrect results when analysis techniques
are used that require smoothness of the simulation result with respect to input data, such
as a sensitivity analysis for identifying important parameters or nonlinear programming
for optimization.

Advances are also needed to translate run-time exceptions into a language that can
be understood by the model user who may not have a background in numerical methods.
Furthermore, diagnostics methods, or expert systems, may be developed that guide a
user in finding a better model configuration.

In summary, there are quite a few interesting open research problems in the field of
equation-based modeling for building systems. We believe that the benefits of further
progress in this area would be substantial as equation-based modeling enables many
new applications, it facilitates integration of models from different engineering domains,
it allows broadening the development effort for modeling and simulation environments
across different disciplines, and it allows modeling at a higher level of abstraction that is
closer to how a human typically describes an engineering problem.

4.6 Applications

We will now present examples in which we determined control parameters using frequency
domain analysis and optimization. The models were constructed using component models
of the above described Modelica Buildings library, version 4.0.0, with Modelica Fluid

1.0 Beta 2 and the Modelica Standard Library 2.2.1. To build, simulate and linearize
the system models, we used the Linux version of the Modelica modeling and simulation
environment Dymola 6.0b [Brück et al., 2002]. For the frequency domain analysis, we

used MATLABR© 2008a with the Control System Toolbox
TM

[Mathworks, 2008]. The
optimization was done using GenOptR© 2.1.0 [Wetter, 2004].

4.6.1 Controls Design using Root Locus

The root locus technique is a commonly used controls design method for linear time
invariant (LTI) systems. The root locus shows the location of the poles and zeros of the
characteristic equation 1 + k G(s) = 0 for a varying control gain k ∈ [0,∞), where G(s)
is the open loop transfer function. We will now show the use of this technique to design
a controller for a heating coil.

Fig. 2 shows the Modelica model of the open-loop system. The circles are boundary
conditions with constant pressure and temperature. Their parameters are such that the
water flow direction is from the model sou 1 to sin 1 and the air flow direction is from
sou 2 to sin 2. The control input u is equal to the lift of a valve whose relationship
between valve lift and volume flow rate is linear (at a constant pressure difference). The
control objective was to track a set point for the heat exchanger air outlet temperature.
The dynamic response of the outlet temperature sensor was modeled using a linear first

16

Figure 2: Open loop model for the heating coil.

order differential equation. The heat exchanger was a finite volume model with heat
capacities for the water in the tubes, for the tube metal wall and for the air. Each pipe
was discretized along its water flow path, and the air was discretized along its flow path
with an element for each intersection of the air flow path with a pipe. The convective
heat transfer coefficient on the water side was a function of the water mass flow rate,
whereas the air-side convective heat transfer coefficient was held constant as we did not
vary the air flow rate in this example. The valve was sized such that its authority was
0.5. For the closed loop model, we used a proportional controller. The closed loop model
defined a differential algebraic equation system with 2593 variables. It was composed of
405 component models (that were primarily used to define the heat exchanger model).
There were a total of 36 state variables for the coil model and one state variable for the
dynamics of the temperature sensor at the coil air outlet. The biggest coupled nonlinear
system of equations was an 8× 8 system, which was reduced to a set of scalar equations
by the symbolic processor which also found analytic expressions for all elements of the
Jacobian matrices.

The closed loop system exhibited oscillatory behavior for large values of the propor-
tional gain Kp and large steady state errors for small values. Thus, our objective was to
find the value of Kp that gives small steady state error and non-oscillatory behavior.

As the plant was non-linear, we followed the following design procedure:

1. Bring the open loop system to different steady state conditions, and linearize the
open loop response around these steady state conditions. This yields, for each
linearization, an LTI model of the form ẋ = Ax+B u, y = C x+D u, with 37 state
variables.

2. For each LTI model, compute a reduced order model ˙̃x = Ã x̃+ B̃ u, y = C̃ x̃+ D̃ u
that has similar response to the original LTI model but is better suited for controls
design than the high order model.

17

−200

0

200

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)

0 500 1000 1500
0

10

20

30

40

50

60

Step Response

Time (sec)

A
m

pl
itu

de
 [K

]

−200

0

200

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

0

180

360

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

0 500 1000 1500
0

10

20

30

40

50

60

Step Response

Time (sec)

A
m

pl
itu

de
 [K

]

10
−4

10
−2

10
0

10
2

−540

−360

−180

0

P
ha

se
 (

de
g)

full order

reduced order

full order
reduced order

Figure 3: Bode plots and step responses for full order models (with 37 states) and reduced
order models (with 3 states). The top row is for u = 0.05 and the bottom row for u = 0.95.

3. For each reduced order model, design a controller (that is applicable locally because
the model is linearized) and then design a control law that is applicable for the whole
range of operating conditions.

4. Test the controller on the original nonlinear model. If the control performance is
unsatisfactory, repeat the previous step.

For step 1, we used the Dymola program to bring the plant to steady state conditions
for a small and large valve opening. In particular, we set u = 0.05 and u = 0.95, respec-
tively, simulated the open loop plant until it reached steady state, and then called the
linearization command of Dymola that extracts an LTI model around the current oper-
ating point. Thus, rather than implementing a linearized model that would be valid only
locally, we implemented a nonlinear model, let it reach two different operating points that
were of interest, and then called a linearization command of the simulation environment.
The linearization command conducted an input perturbation and reinitialization of state
variables as needed during the perturbation to compute a linear approximation to the
original model.

For step 2, we imported the LTI model into MATLAB and computed the Hankel
singular values {σi}

37

i=1
. They were σi = {29.29, 2.997, 0.3334, 0.2778, . . .} for u = 0.05

and σi = {14.48, 1.687, 0.5090, 0.0217, . . .} for u = 0.95. As the fourth values contributed
little to the response, we computed 3rd order reduced order models for both values of
u. Fig. 3 compares the Bode plots and step responses for the full order and the reduced
order models. The figures show that the reduced order models were a good fit.

Next, for step 3, we used the root locus technique to select control gains for each
reduced order model. Fig. 4 shows the root locus for both reduced order models. From

18

−0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
0.0120.0260.0420.0620.090.13

0.2

0.4

0.0120.0260.0420.0620.090.13

0.2

0.4

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

 System: rSys1
Gain: 2.26
Pole: −0.00486 + 0.143i
Damping: 0.0339
Overshoot (%): 89.9
Frequency (rad/sec): 0.144

System: rSys2
Gain: 0.0798
Pole: −0.0187 − 0.0259i
Damping: 0.585
Overshoot (%): 10.4
Frequency (rad/sec): 0.0319

System: rSys2
Gain: 4.74
Pole: −0.0132 − 0.178i
Damping: 0.0738
Overshoot (%): 79.3
Frequency (rad/sec): 0.178

System: rSys1
Gain: 0.124
Pole: −0.0181 + 0.0311i
Damping: 0.503
Overshoot (%): 16.1
Frequency (rad/sec): 0.036

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

y=0.05
y=0.95

Figure 4: Root locus plot for the reduced order models. The red solid locus corresponds
to the system linearized at u = 0.05 and the blue dashed locus is for u = 0.95.

19

Table 1: Damping ratio ζ for both reduced order models for different proportional gains
Kp. The row ζ(u = 0.05) is for the reduced order model that approximates the plant for
u = 0.05.

Kp 0.13 0.5 1 2 5

ζ(u = 0.05) 0.5 0.23 0.096 0.048 unstable
ζ(u = 0.95) 0.5 0.28 0.19 0.13 0.07

the root locus, we obtained the poles and their damping ratios ζ for different proportional
gains Kp as listed in Tab. 1. The data show that for Kp ≥ 2 there is little damping at
low valve lift.

For step 4, we simulated the original nonlinear system in Dymola for Kp = 1 and
Kp = 2. The steady state error was 0.6K for Kp = 1. For Kp = 2, we observed
oscillatory behavior at low valve lift. Thus, we selected a linear gain schedule such that
Kp(u = 0.05) = 1 and Kp(u = 0.95) = 2. This linear gain schedule resulted in the step
response shown in Fig. 5, with a steady state error below 0.4K. To reduce the valve
oscillation after the step signal at t = 30min would require a reduction in Kp and hence
would lead to a larger steady-state error. Thus, if the transient response in Fig. 5 is not
acceptable, then the proportional controller would have to be replaced, for example, by
a proportional-integral controller.

20 30 40 50 60 70 80
0

0.5

1

u

20 30 40 50 60 70 80
15

20

25

30

35

y
in

 [°
 C

]

time in minutes

Figure 5: Closed loop step response with gain scheduling such that Kp(u = 0.05) = 1
and Kp(u = 0.95) = 2. The top figure is the actuator input, and the bottom figure is the
temperature measured at the coil outlet.

20

Figure 6: Implementation of VAV system model in Modelica.

4.6.2 Precommissioning of a Fan Static Pressure Reset Controller for a Vari-

able Air Volume Flow System

For Variable Air Volume (VAV) flow systems with direct digital control to the zone
level, the California Title 24 Energy Code requires supply pressure reset by zone de-
mand [CEC]. A control logic that is used by major control vendors is the Trim and
Response logic [Taylor, 2007]. This control logic may be implemented as follows: If the
supply fan is on, a central controller samples the VAV damper positions every two min-
utes. If no damper is close to fully open, the pressure set point is decreased by 10 Pascals;
else it is increased by 15 Pascals. When the fan switches off, the set point is set to 125
Pascals.

Since the default parameters for the pressure adjustment will work well only for few
systems, a trial and error tuning is almost always required during commissioning [Taylor,
2007]. During commissioning, the engineer adjusts pressure increments and decrements
until the system is stable.

We will now perform this procedure using a Modelica model that we linked to the
GenOpt optimization program to find appropriate settings that may be used as a starting
point during a commissioning process. For this example, we created a Modelica imple-
mentation of the VAV system model described in ASHRAE 825-RP [Haves et al., 1996].
Unlike the model used by Haves et al. [1996], our model also includes equations for the
CO2 concentration, in addition to equations for enthalpy (or temperature), pressure and
mass flow rate. We also added models of completely mixed air volumes to model the CO2

storage in the room air and in the return air plenum. Fig. 6 shows the system model in
Modelica. On top are the controllers for the static pressure reset and the fan frequency
drives. The blue circles on the left are ambient conditions, which are connected to an
outside air mixing box. There are also flow resistances for the ducts and the supply and
return fans. On the right is a system model that encapsulates the supply ducts, the
return ducts and the six rooms.

21

Figure 7: Implementation of the room models in Modelica.

Fig. 7 shows the implementation of the room models. Each room has an individual
VAV damper with nonlinear characteristics between opening angle and flow rate. The
model with label vav contains the VAV damper and a flow resistance that has been
parameterized to account for the duct and diffuser resistance. This model is connected
to an instantaneously mixed room volume which is labeled vol. Counterclockwise, this
room volume model is connected to a model for the room leakage to the exterior (with
label lea), to a port that allows connecting different rooms with each other (using a flow
resistance to separate adjacent rooms), to a CO2 emission model (its input is the number
of people), and to another mixed air volume that models the CO2 concentration in the
exhaust air plenum. Next, there is another port that is used to connect the room volume
to another room to its right and to a CO2 sensor. The CO2 sensor is connected to a model
that converts mass fraction to volume fraction. Its output is connected to a proportional
controller with saturation. The controller output is connected to a model for the actuator
motor, which has a finite travel speed and a hysteresis that causes it to adjust the damper
position only if the position error exceeds a threshold. This configuration is used for each
of the six rooms.

The six rooms are then connected with each other using a pressure drop element to
model interzonal air exchange, and they are connected to an air distribution system for
the supply and return duct. This subsystem model is then encapsulated into the icon
with label roo in Fig. 6 and connected to the plant model to form the overall system
model.

In the system model, all air mass flow rates are computed based on the flow friction
and the fan curve that relates fan volume flow rate with fan pressure raise for the given
number of revolutions which is determined by a model for the fan frequency controller.
The total system model contained 730 simulation components that led to a differential

22

algebraic equation system with 4420 scalar equations and 40 state variables. Some mod-
els triggered time events (e.g., for discrete time controls) or state events (e.g., for the
hysteresis of the damper position adjustment). The computation time to simulate one
day was about 10 minutes. One of the main reasons for the large computation time
was the discrete time control that led to time events, and the motor model of the VAV
damper that triggered state events due to its hysteresis model. In total, there were 1440
time events and 5172 state events. The time integration step size, which is adaptive,
was never enlarged to more than 30 seconds, most likely due to the events. Thus, while
this system model is applicable for controls analysis, one would hardly use such a level
of modeling detail for an annual simulation. Rather, one may replace the discrete time
control with continuous time control to reduce the time event, neglect the hysteresis of
the motor to eliminate state events, and introduce a transport delay in the central plant’s
supply and return duct to break a 50 dimensional nonlinear equation system that solves
for pressure and mass flow rates into three smaller equation systems with dimensions 9,
15 and 21. When we implemented these changes (in a more recent model that was based
on Modelica Fluid version 1.0, release candidate 1), the computation time was reduced
by a factor of fifty, and the numerical solver was able to enlarge the integration step size
to a maximum of 1100 seconds.

To simplify the example, we assumed that thermal conditioning and ventilation were
provided by separate systems. Thus, the one control objective was to maintain a CO2

concentration in each room of 700 PPM above the outside air concentration by regulat-
ing the room VAV dampers, and to minimize the fan static pressure using the Trim and
Response logic. We assumed a fixed outside air damper position of u = 0.5, an occupant
density of up to 0.15 person per m2 floor area, which varied over the day for each zone
individually. A CO2 emission rate per person of 8.18 · 10−6 kg/s (= 15dm3/h CO2 emis-
sion per person) was used [Lochau, 1989]. The VAV boxes are pressure dependent, i.e.,
their flow rate changes if the difference between inlet and room static pressure changes.
Each room has a continuous-time proportional controller that tracks the room CO2 con-
centration. Fig. 8(a) shows the time response of the system with base case controller
settings as listed in Tab. 2. The figure shows that during the occupied hours, there was
a frequent change in duct static pressure (bottom figure) which caused an oscillatory
behavior of the VAV dampers (middle figure).

Next, to avoid the oscillatory VAV actuator movement, we adjusted the sampling time
ts, the pressure increment δpi and decrement δpd of the Trim and Response algorithm.
We note that because of the nonlinearity of fan power consumption with respect to
duct static pressure set point, on a temporal average, an oscillatory duct static pressure
setpoint causes more flow friction compared to a stable control, and hence leads to a
larger fan energy use. Thus, instead of a manual trial and error procedure to find values
for ts, δpi and δpe that lead to a stable control, we used optimization to find the value
for x , (ts, δpi, δpe) that minimizes the fan energy use, subject to a constraint on the
room CO2 concentration. In particular, we solved

min
x∈X

{f(x) | g(x) = 0}, (3)

23

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200
400
600
800

1000

C
O

2 in
 [P

P
M

]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2
0.4
0.6
0.8

1

u

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

time in [h]du
ct

 p
re

ss
ur

e
in

 [P
a]

measured
set point

(a) Base case parameter settings x0, with CO2

emission profiles as used in optimization.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200
400
600
800

1000

C
O

2 in
 [P

P
M

]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2
0.4
0.6
0.8

1

u
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

50

100

time in [h]du
ct

 p
re

ss
ur

e
in

 [P
a]

measured
set point

(b) Optimized parameter settings x∗, with CO2

emission profiles as used in optimization.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200
400
600
800

1000

C
O

2 in
 [P

P
M

]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2
0.4
0.6
0.8

1

u

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

time in [h]du
ct

 p
re

ss
ur

e
in

 [P
a]

measured
set point

(c) Base parameter settings x0, with CO2 emis-
sion profiles different from what was used when
doing the optimization.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200
400
600
800

1000

C
O

2 in
 [P

P
M

]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2
0.4
0.6
0.8

1

u

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

time in [h]du
ct

 p
re

ss
ur

e
in

 [P
a]

measured
set point

(d) Optimized parameter settings x∗, with CO2

emission profiles different from what was used
when doing the optimization.

Figure 8: CO2 concentrations above outside air concentration in the six rooms (with the
set point shown in black), VAV damper positions and duct static pressure for the base
case and for the control settings obtained using optimization.

24

where

f(x) =
1

E0

∫ T

0

Pf (x, t) dt, (4)

is the normalized fan energy use, X is the feasible set that imposes upper and lower
bounds for the independent variables, T = 1day is the simulation period and Pf (·, ·) is

the sum of the supply and return fan power consumption. The term E0 =
∫ T

0
Pf (x0, t)dt

is the fan energy consumption at the initial iterate x0. It is used to normalize the cost
function which will facilitate the scaling of the constraint function g(·). The constraint
function g : R

3 → R ensures that the CO2 set point in the rooms is not exceeded, except
for a possible user-specified number of extreme zones in which the CO2 may not be
tracked. Because we configured the Trim and Response logic so that at least three rooms
require an increase in static pressure before the fan static pressure set point is increased,
we defined the constraint function as

g(x) =
1

T

∫ T

0

(
max{0, (yj(x, t)/x̂s) − 1/(2Kp) − 1 | j ∈ J(x, t)}

)2
dt, (5)

where J(·, ·) is the index set of all VAV dampers except the two with the biggest set point
violation, yj(·, ·) is the measured room CO2 concentration, x̂s = 700PPM is the CO2

set point (above the outside air concentration) and Kp = 10 is the proportional gain of
the P controller for the room air dampers. The term 1/(2Kp) is used to account for the
steady-state error associated with proportional controllers.

To compute a solution for (3), we solved the sequence of optimization problems

Pk
min
x∈X

θk(x), (6)

where θk(·), for k ∈ N, is the optimality function, defined as θk(x) , f(x) + k4 g(x) for
k ∈ N.4 We solved (6) for k ∈ {1, 2, 3, 4}, using the GenOpt optimization program.
Parametric studies showed that f(·) is non-convex and may have local minima. We also
note that f(·) is non-differentiable because of the state-events and time-events. Therefore,
we used GenOpt’s Particle Swarm Optimization algorithm PSOCCMesh, which is a global
optimization algorithm for non-differentiable cost functions. We will denote by x∗ the
best iterate found when solving Pk and by x0 the initial iterate.

In addition to doing the optimization, we also tested how robust the optimal parame-
ter settings are with respect to changes in the CO2 emission profiles. For this robustness
test, for each room we changed the time profiles and their magnitude. For the new set
of profiles, we conducted two simulations, one with the initial iterate x0 and one with
x∗ which was obtained when solving the optimization problem (6) with the original set
of CO2 emission profiles. Thus, x∗ need not be optimal for the new set of CO2 emission
profiles, but our objective is to see if x∗ also leads to good performance under this new
set of CO2 emission profiles. The performance indices were f(·), as defined in (4), and
the normalized distance s(·) traveled by the actuators of all VAV dampers during the
simulation period.

4The term k4 adds a penalty to f(·), if constraints are violated, that is increasing in k, for k ∈ N.

25

Tab. 2 lists the initial values and the final values of the optimization, together with
the results of the optimization and the robustness test. For both CO2 emission profiles,
the optimized parameter settings reduced the fan energy consumption by 3% to 4% and
the distance s(·) by about 14%. For the modified set of CO2 emission profiles, the fan
energy was significantly smaller because less CO2 was emitted. Fig. 8 also shows that the
optimized parameter settings x∗ led to fewer oscillations of the VAV dampers because of a
less aggressive re-adjustment of the static pressure set point. The CO2 concentrations are
however still maintained within the acceptable limit, i.e., g(x) = 0 for all four simulations.
There is a steady-state control error between 18 : 00 and 22 : 00, as shown in Fig. 8,
because during this time period, the fan is still on (as it is operated on a timer) while all
VAV boxes are closed.

Table 2: Base case and results of the control parameter optimization.

original CO2 profile modified CO2 profile
base case, x0 optimum, x∗ base case, x0 optimum, x∗

sampling time ts in [s] 120 220 120 220
pressure increment δi in [Pa] 15 5 15 5
pressure decrement δd in [Pa] −10 −20 −10 −20

fan energy use f(x) 1 0.966 0.642 0.614
constraint violation g(x) 0 0 0 0
distance s(x) 1 0.853 0.816 0.702

5 Conclusions

We showed that equation-based object-oriented modeling allows analyzing problems that
are beyond the capabilities of traditional building simulation programs. Compared to
earlier efforts to establish equation-based object-oriented modeling in the building simu-
lation community, we believe that the development of Modelica, which is supported across
many engineering domains, provides an opportunity to revive the effort of establishing
more modular and flexible modeling and simulation techniques for building energy and
control systems. As Modelica is an open-source language for which several commercial
and open-source modeling and simulation environments are both existing and emerging,
it provides an open environment for collaboration and model exchange.

While there are many challenges to be overcome, we believe that equation-based
object-oriented modeling allows the field of building simulation to progress towards the
next generation of tools. Such a progression is similar to the developments in com-
puter science in which the level of abstraction at which programs are formulated in-
creased from machine language to symbolic assembler, to macro processors, to high-
level procedural languages (such as FORTRAN) and further to object-oriented lan-
guages [Shaw and Garlan, 1996]. It would be rather surprising if the field of building
simulation were to stagnate at procedural languages that frequently led to large mono-

26

lithic simulation programs, which are hard to maintain and for which adding new models
and analysis features is a significant time investment. A more flexible modeling envi-
ronment also has the potential to better support design processes that reduce cost and
development time, such as model-based system-level design, in which systems are ex-
pressed at an increasingly higher level of abstraction to allow a designer to focus on the
system architecture rather than its details of implementation [Sangiovanni-Vincentelli,
2007].

However, further research and development is needed to make available equation-
based object-oriented modeling and simulation to a larger audience for whom debugging
non-convergent models is not an option. Such research and development is part of the
future work on the Modelica-based library for building energy and control systems de-
scribed here.

To further disseminate equation-based object-oriented modeling and simulation to
the building simulation community, the question however is not how to get existing users
to adopt to a new technology, but rather how to better integrate modeling into rapid
prototyping for inventing new building systems, and into the design and operation of
buildings. New technologies are seldom introduced by forcing a change onto existing
users, but rather through the enabling of processes that add value for the user and that
were not possible before.

6 Acknowledgements

This research was supported by the Assistant Secretary for Energy Efficiency and Re-
newable Energy, Office of Building Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

The author would like to thank Scott A. Bortoff at the United Technologies Research
Center for his input to the controls design example and Philip Haves, Brian A. Coffey
and Walter F. Buhl, all at the Lawrence Berkeley National Laboratory, as well as the
anonymous reviewers, for their valuable feedback to the manuscript.

7 Nomenclature

7.1 Conventions

1. Elements of a set or a sequence are denoted by subscripts.

2. f(·) denotes a function where (·) stands for the undesignated variables. f(x) denotes
the value of f(·) for the argument x. f : A → B indicates that the domain of f(·)
is in the space A, and that the image of f(·) is in the space B.

3. We say that a function f : R
n → R is once continuously differentiable if f(·) is

defined on R
n, and if f(·) has a continuous derivative on R

n.

27

7.2 Symbols

f(·) cost function
g(·) constraint function
θk(·) optimality function, for k ∈ N

Kp proportional gain
G(s) open loop transfer function
t time
u control signal
x independent parameter
xk iterate of the optimization algorithm, for k ∈ N

x∗ best iterate found by the optimization algorithm
y measurement signal
σ Hankel singular values of the linearized system
ζ damping ratio
a ∈ A a is an element of A
N {0, 1, 2, . . .}
R set of real numbers
, equal by definition

References

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of par-
allel computing research: A view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, Dec 2006. URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

ASHRAE. Sequences of Operation for Common HVAC Systems. ASHRAE, Atlanta, GA,
2006.

Andrzej Banaszuk, Prashant G. Mehta, and Gregory Hagen. The role of control in design:
From fixing problems to the design of dynamics. Control Engineering Practice, 15
(10):1292–1305, October 2007. doi: 10.1016/j.conengprac.2006.11.006.

Vladimir Bazjanac and Tobias Maile. IFC HVAC interface to EnergyPlus – a case of
expanded interoperability for energy simulation. In Proceedings of SimBuild 2004,
Boulder, CO, August 2004. IBPSA-USA.

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Dymola for multi-
engineering modeling and simulation. In Martin Otter, editor, Proceedings of the
2nd Modelica conference, pages 55–1 – 55–8, Oberpfaffenhofen, Germany, March
2002. Modelica Association and Deutsches Zentrum fur Luft- und Raumfahrt. URL
http://www.modelica.org/events/Conference2002.

Peter Bunus and Peter Fritzson. Automated static analysis of equation-based compo-
nents. Simulation, 80(7–8):321–345, 2004. doi: 10.1177/0037549704046340.

28

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.modelica.org/events/Conference2002

CEC. 2005 Building Energy Efficiency Standards, Nonresidential Compliance Man-
ual. California Energy Commission, Sacramento, CA, cec-400-2005-006-cmf edition,
2005.

Francesco Casella, Martin Otter, Katrin Proelss, Christoph Richter, and Hubertus
Tummescheit. The Modelica Fluid and Media library for modeling of incompressible
and compressible thermo-fluid pipe networks. In Christian Kral and Anton Haumer,
editors, Proc. of the 5-th International Modelica Conference, volume 2, pages 631–
640, Vienna, Austria, September 2006. Modelica Association and Arsenal Research.

François E. Cellier. Object-oriented modeling: Means for dealing with
system complexity. In Proceedings 15th Benelux Systems and Con-
trol Conference, pages 53–64, Mierlo, The Netherlands, 1996. URL
http://citeseer.ist.psu.edu/cellier96objectoriented.html.

François E. Cellier and Ernesto Kofman. Continuous System Simulation. Springer, 2006.

P. Charlesworth, J. A. Clarke, G. Hammond, A. Irving, K. James, B. Lee, S. Lock-
ley, Randal D. Mac, D. Tang, T. J. Wiltshire, and A. J. Wright. The en-
ergy kernel system. In J. A. Clarke, J. W. Mitchell, and R. C. Van de Perre,
editors, Proc. of the IBPSA Conference, Nice, France, August 1991. URL
http://www.ibpsa.org/conferences.htm.

CIBSE. Building Control Systems, CIBSE Guide H. Butterworth-Heinemann, July 2000.
ISBN 07506 504 78.

Joe A. Clarke. Energy Simulation in Building Design. Butterworth-Heinemann, Oxford,
UK, 2nd edition, 2001.

Drury B. Crawley, Linda K. Lawrie, Frederick C. Winkelmann, Walter F. Buhl, Y. Joe
Huang, Curtis O. Pedersen, Richard K. Strand, Richard J. Liesen, Daniel E. Fisher,
Michael J. Witte, and Jason Glazer. EnergyPlus: creating a new-generation building
energy simulation program. Energy and Buildings, 33(4):443–457, 2001.

H. Elmqvist, M. Otter, and F. Cellier. Inline integration: A new mixed symbolic/numeric
approach for solving differential– algebraic equation systems. In Keynote Address,
Proc. ESM’95, pages xxiii–xxxiv”, Prague, Czech Republic, June 1995. European
Simulation Multiconference. URL http://citeseer.ist.psu.edu/12347.html.

Hilding Elmqvist, Hubertus Tummescheit, and Martin Otter. Object-oriented modeling
of thermo-fluid systems. In Peter Fritzson, editor, Proceedings of the 3rd Modelica
conference, pages 269–286, Linköping, Sweden, November 2003. Modelica Associa-
tion and Institutionen för datavetenskap, Linköpings universitet.

F. Felgner, S. Agustina, R. Cladera Bohigas, R. Merz, and L. Litz. Simulation of
thermal building behaviour in modelica. In Martin Otter, editor, Proceedings of
the 2nd Modelica conference, pages 147–154, Oberpfaffenhofen, Germany, March

29

http://citeseer.ist.psu.edu/cellier96objectoriented.html
http://www.ibpsa.org/conferences.htm
http://citeseer.ist.psu.edu/12347.html

2002. Modelica Association and Deutsches Zentrum fur Luft- und Raumfahrt. URL
http://www.modelica.org/events/Conference2002.

Rüdiger Franke, Francesco Casella, Martin Otter, Katrin Proelss, Michael Sielemann,
and Michael Wetter. Standardization of thermo-fluid modeling in Modelica.Fluid.
In Francesco Casella, editor, Proc. of the 7-th International Modelica Conference,
Como, Italy, September 2009a. Modelica Association.

Rüdiger Franke, Francesco Casella, Martin Otter, Michael Sielemann, Hilding Elmqvist,
Sven Erik Mattsson, and Hans Olsson. Stream connectors – an extension of mod-
elica for device-oriented modeling of convective transport phenomena. In Francesco
Casella, editor, Proc. of the 7-th International Modelica Conference, Como, Italy,
September 2009b. Modelica Association.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. John Wiley & Sons, 2004.

Peter Fritzson and Vadim Engelson. Modelica – A unified object-oriented language for
system modeling and simulation. Lecture Notes in Computer Science, 1445:67–90,
1998. URL http://citeseer.ist.psu.edu/fritzson98modelica.html.

E. Hairer and G. Wanner. Solving ordinary differential equations. II. Springer series
in computational mathematics. Springer-Verlag, Berlin, 2nd edition, 1996. ISBN
3-540-60452-9.

P. Haves, L. K. Norford, M. DeSimone, and L. Mei. A standard simulation testbed for
the evaluation of control algorithms & strategies. Final Report 825-RP, ASHRAE,
Atlanta, GA, 1996.

H. Henderson and K. Rengarajan. A model to predict the latent capacity of air condition-
ers and heat pumps at part- load conditions with constant fan operation. ASHRAE
Transactions, 102(1):266–274, 1996.

Alexander Hoh, Timo Haase, Thomas Tschirner, and Dirk Müller. A combined thermo-
hydraulic approach to simulation of active building components applying modelica.
In Gerhard Schmitz, editor, Proceedings of the 4th Modelica conference, Hamburg,
Germany, March 2005. Modelica Association and Hamburg University of Technology.
URL http://www.modelica.org/events/Conference2005.

S. A. Klein and F. L. Alvarado. Engineering equation solver (EES). F-Chart Software,
Madison, WI, 1992.

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct
search: New perspectives on some classical and modern methods. SIAM Review, 45
(3):385–482, 2003.

R. Lochau. Handbuch der Klimatechnik, volume 1, chapter Physiologische Grundlagen.
Verlag C. F. Müller GmbH, Karlsruhe, Germany, 1989. ISBN 3-7880-7335-7.

30

http://www.modelica.org/events/Conference2002
http://citeseer.ist.psu.edu/fritzson98modelica.html
http://www.modelica.org/events/Conference2005

Mathworks. Control system toolbox 8.2, 2008.

Sven Erik Mattsson and Hilding Elmqvist. Modelica – An international effort
to design the next generation modeling language. In L. Boullart, M. Loc-
cufier, and Sven Erik Mattsson, editors, 7th IFAC Symposium on Com-
puter Aided Control Systems Design, Gent, Belgium, April 1997. URL
http://www.modelica.org/publications/papers/CACSD97Modelica.pdf.

Rolf Mathias Merz. Objektorientierte Modellierung thermischen Gebäudeverhaltens. PhD
thesis, Universität Kaiserslautern, September 2002.

Christoph Nytsch-Geusen, Thierry Nouidui, Andreas Holm, , and Wolfram Haupt. A hy-
grothermal building model based on the object-oriented modeling language model-
ica. In Ian Beausoleil-Morrison and Michel Bernier, editors, Proceedings of the Ninth
International IBPSA Conference, volume 1, pages 867–876, Montreal, Canada, Au-
gust 2005. International Building Performance Simulation Association and Ecole
Polytechnique de Montreal.

Elijah Polak. Optimization, Algorithms and Consistent Approximations, volume 124 of
Applied Mathematical Sciences. Springer Verlag, 1997.

Elijah Polak and Michael Wetter. Precision control for generalized pattern
search algorithms with adaptive precision function evaluations. SIAM Jour-
nal on Optimization, 16(3):650–669, 2006. doi: 10.1137/040605527. URL
http://link.aip.org/link/?SJE/16/650/1.

Per Sahlin and Edward F. Sowell. A neutral format for building simulation models. In
Proceedings of the Second International IBPSA Conference, pages 147–154, Vancou-
ver, BC, Canada, June 1989. URL http://www.ibpsa.org/conferences.htm.

Alberto Sangiovanni-Vincentelli. Quo vadis, SLD? reasoning about the trends and chal-
lenges of system level design. Proceedings of the IEEE, 95(3):467–506, March 2007.
URL http://www.gigascale.org/pubs/1023.html.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, New Jersey, 1996.

Edward F. Sowell and Philip Haves. Efficient solution strategies for building energy
system simulation. Energy and Buildings, 33(4):309–317, 2001. doi: 10.1016/
S0378-7788(00)00113-4.

Edward F. Sowell, Walter F. Buhl, Ahmet E. Erdem, and Frederick C. Winkelmann. A
prototype object-based system for HVAC simulation. Technical Report LBL-22106,
Lawrence Berkeley National Laboratory, September 1986.

Jeffrey D. Spitler. Ashrae tc 4.7 minutes, January 1998. URL
http://tc47.ashraetcs.org/pdf/MeetingMinutes/47min198.pdf.

31

http://www.modelica.org/publications/papers/CACSD97Modelica.pdf
http://link.aip.org/link/?SJE/16/650/1
http://www.ibpsa.org/conferences.htm
http://www.gigascale.org/pubs/1023.html
http://tc47.ashraetcs.org/pdf/MeetingMinutes/47min198.pdf

Steven T. Taylor. VAV system static pressure setpoint reset. ASHRAE Journal, pages
24–32, June 2007.

Michael M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Academic
Publisher, 2001.

M. Trcka, J. L. M. Hensen, and A. J. Th. M. Wijsman. Distributed building perfor-
mance simulation - a novel approach to overcome legacy code limitations. ASHRAE
HVAC&R, 12(3a):621–640, 2006.

Marija Trčka, Michael Wetter, and Jan Hensen. Comparison of co-simulation ap-
proaches for building and HVAC/R simulation. In Jiang Yi, Zhu Yingxin, Yang
Xudong, and Li Xianting, editors, Proc. of the 10-th IBPSA Conference. Interna-
tional Building Performance Simulation Association and Tsinghua University, 2007.
URL http://www.ibpsa.org/.

Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library of auto-
matically tuned sparse matrix kernels. Journal of Physics: Conference Series, 16:
521–530, 2005. doi: 10.1088/1742-6596/16/1/071.

Michael Wetter. GenOpt, generic optimization program, user manual, version 2.0.0.
Technical Report LBNL-54199, Lawrence Berkeley National Laboratory, Berkeley,
CA, USA, January 2004.

Michael Wetter. Multizone building model for thermal building simulation in Modelica. In
Christian Kral and Anton Haumer, editors, Proc. of the 5-th International Modelica
Conference, volume 2, pages 517–526, Vienna, Austria, September 2006a. Modelica
Association and Arsenal Research.

Michael Wetter. Multizone airflow model in Modelica. In Christian Kral and Anton
Haumer, editors, Proc. of the 5-th International Modelica Conference, volume 2,
pages 431–440, Vienna, Austria, September 2006b. Modelica Association and Arse-
nal Research.

Michael Wetter and Philip Haves. A modular building controls virtual test bed for the
integration of heterogeneous systems. In Proc. of SimBuild, Berkeley, CA, August
2008. IBPSA-USA.

Michael Wetter and Elijah Polak. Building design optimization using a convergent pattern
search algorithm with adaptive precision simulations. Energy and Buildings, 37(6):
603–612, January 2004a. doi: 10.1016/j.enbuild.2004.09.005.

Michael Wetter and Elijah Polak. A convergent optimization method using pattern
search algorithms with adaptive precision simulation. Building Services Engineering
Research and Technology, 25(4):327–338, 2004b.

Michael Wetter and Jonathan Wright. A comparison of deterministic and probabilistic
optimization algorithms for nonsmooth simulation-based optimization. Building and
Environment, 39(8):989–999, August 2004.

32

http://www.ibpsa.org/

Michael Wetter, Philip Haves, Michael A. Moshier, and Edward F. Sowell. Using SPARK
as a solver for modelica. In Proc. of SimBuild, Berkeley, CA, August 2008. IBPSA-
USA.

F. C. Winkelmann, B. E. Birsdall, W. F. Buhl, K. L. Ellington, A. E. Erdem, J. J. Hirsch,
and S. Gates. DOE-2 supplement, version 2.1E. Technical Report LBL-34947,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA, November 1993.

33

	Introduction
	Traditional Building Simulation Programs
	Limitations of Traditional Building Simulation Programs
	Building System Library
	Characteristics of the Target Applications
	Implementation
	Base Class for Library
	Buildings Library Packages
	Technical Difficulties
	Applications
	Controls Design using Root Locus
	Precommissioning of a Fan Static Pressure Reset Controller for a Variable Air Volume Flow System

	Conclusions
	Acknowledgements
	Nomenclature
	Conventions
	Symbols

