Modeling and Simulating Blast Effects on Electric Substations

PDF Version Also Available for Download.

Description

A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters ... continued below

Creation Information

Roybal, Lyle G.; Jeffers, Robert F.; McGillivary, Kent E.; Paul, Tony D. & Jacobson, Ryan May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

Source

  • 2009 IEEE International Conference on Technologies for Homeland Security,Waltham, MA,05/11/2009,05/13/2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-09-15306
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 957550
  • Archival Resource Key: ark:/67531/metadc928824

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 29, 2016, 8:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 31

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Roybal, Lyle G.; Jeffers, Robert F.; McGillivary, Kent E.; Paul, Tony D. & Jacobson, Ryan. Modeling and Simulating Blast Effects on Electric Substations, article, May 1, 2009; [Idaho]. (digital.library.unt.edu/ark:/67531/metadc928824/: accessed November 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.