An extended multiscale principle of virtual velocities approach for evolving microstructure

PDF Version Also Available for Download.

Description

A hierarchical multiscale approach is presented for modeling microstructure evolution in heterogeneous materials. Preservation of momentum across each scale transition is incorporated through the application of the principle of virtual velocities at the fine scale giving rise to the appropriate continuum momentum balance equations at the coarse scale. In addition to satisfying momentum balance and invariance of momentum among scales, invariance of elastic free energy, stored free energy, and dissipation between two scales of observation is regarded as crucial to the physics of each scale transition. The preservation of this energy partitioning scheme is obtained through construction of constitutive relations ... continued below

Creation Information

Luscher, Darby J & Mcdowell, David L January 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A hierarchical multiscale approach is presented for modeling microstructure evolution in heterogeneous materials. Preservation of momentum across each scale transition is incorporated through the application of the principle of virtual velocities at the fine scale giving rise to the appropriate continuum momentum balance equations at the coarse scale. In addition to satisfying momentum balance and invariance of momentum among scales, invariance of elastic free energy, stored free energy, and dissipation between two scales of observation is regarded as crucial to the physics of each scale transition. The preservation of this energy partitioning scheme is obtained through construction of constitutive relations within the framework of internal state variable theory. Internal state variables that are directly computed from the fine scale response are introduced to augment the state equations and describe the inelastic energy storage and dissipation within the fine scale. Evolution equations for these internal state variables must be consistent with the observed dissipation at the fine scale. By virtue of a second gradient kinematic decomposition, the framework naturally gives rise to couple stresses.

Source

  • Mesomechanics 2009 ; June 24, 2009 ; Oxford, United Kingdom

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-09-01117
  • Report No.: LA-UR-09-1117
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956458
  • Archival Resource Key: ark:/67531/metadc928821

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Luscher, Darby J & Mcdowell, David L. An extended multiscale principle of virtual velocities approach for evolving microstructure, article, January 1, 2009; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc928821/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.