Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio

PDF Version Also Available for Download.

Description

Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to ... continued below

Creation Information

Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D et al. May 26, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.

Source

  • 23rd Symposium on Fusion Engineering, San Diego, CA May 31-June 4, 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: PPPL-4447
  • Grant Number: DE-ACO2-09CH11466
  • Office of Scientific & Technical Information Report Number: 963986
  • Archival Resource Key: ark:/67531/metadc928452

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 26, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 13, 2016, 2:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D et al. Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio, article, May 26, 2009; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc928452/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.