On "spurious" eddies

PDF Version Also Available for Download.

Description

Recently several papers have appeared in the CFD literature, proposing an idealized instability problem as a benchmark for discriminating among numerical algorithms for two-dimensional Navier-Stokes flows. The problem is a double shear layer simulated at coarse resolution and with a prescribed interface perturbation. A variety of second-order accurate schemes have been tested, with all results falling into one of two solution patterns - one pattern with two eddies and the other with three eddies. In the literature, there is no fast-and-firm rule to predict the results of any particular algorithm. However it is asserted that the two-eddy solution is correct. ... continued below

Physical Description

6 p.

Creation Information

Drikakis, D. (Dimitris); Margolin, L. G. & Smolarkiewicz, P. K. (Piotr K.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently several papers have appeared in the CFD literature, proposing an idealized instability problem as a benchmark for discriminating among numerical algorithms for two-dimensional Navier-Stokes flows. The problem is a double shear layer simulated at coarse resolution and with a prescribed interface perturbation. A variety of second-order accurate schemes have been tested, with all results falling into one of two solution patterns - one pattern with two eddies and the other with three eddies. In the literature, there is no fast-and-firm rule to predict the results of any particular algorithm. However it is asserted that the two-eddy solution is correct. Our own research has led to two conclusions. First, the appearance of the third eddy is tied up with small details of the truncation error; we illustrate this point by prescribing small changes that lead to reversal of the appearance/disappearance of the third eddy in several schemes. Second, we discuss the realizability of the two solutions and suggest that the three-eddy solution is the more physical. Overall, we conclude that this problem is a poor choice of benchmark to discriminate among numerical algorithms.

Physical Description

6 p.

Source

  • Submitted to: Proceedings: ICFD Conference on Numerical Methods for Fluid Dynamics-March 26-29, 2001- Oxford, UK

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-1153
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975151
  • Archival Resource Key: ark:/67531/metadc928417

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:36 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Drikakis, D. (Dimitris); Margolin, L. G. & Smolarkiewicz, P. K. (Piotr K.). On "spurious" eddies, article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc928417/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.