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GENERAL INTRODUCTION 

 

In conventional crystallography, crystals are constructed by unit-cells repeated in a 

periodic fashion.[1] This periodic long range order is only compatible with two-, three-, four- 

and six-fold point symmetries.  Therefore, certain rotational symmetries are forbidden by the 

requirement of the translational symmetry or invariance. In other words, a crystal with a five-

fold or more than six-fold rotational symmetry is impossible.  

In 1982, everything changed with the discovery of the Al-Mn alloy produced by rapid 

solidification via melt-spinning process.[2] With a transmission electron microscope, 

Shechtman et al.[2, 3] observed relatively sharp Bragg peaks with ten-, six- and two-fold 

rotational symmetries. The solid was showing its icosahedral symmetry and the material 

possessed a long range rotational order without translational symmetry. This was a shocking 

discovery and, more importantly, it was an announcement for a new state of condensed 

matter so-called quasicrystal.[2] Ten years later, in 1992, the International Union of 

Crystallography redefined “crystal” as “a solid having an essentially discrete diffraction 

pattern”.[4]  

However, the icosahedral phase was truly metastable, because, although this phase 

nucleated and grew at different cooling rates, after heating at 673 K it was transformed to  a 

stable Al6Mn crystalline phase.[2] Only after 2 years, the first stable quasicrystal (i-Al-Li-

Cu) was found. It was prepared by conventional casting and solidification techniques not by 

rapid solidification.[5] After this discovery, lots of new quasicrystals have been identified. 

Today, most of the known quasicrystals are Al rich binary or ternary intermetallics.[6]  

There are two main groups of quasicrystals, namely, icosahedral and decagonal.[7, 8] 
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Icosahedral quasicrystals are aperiodic in three dimensions while decagonal ones are 

aperiodic in two dimensions and periodic in one dimension.[7, 8]  The most success has been 

achieved in producing centimeter size, single grain icosahedral quasicrystals in Al-Cu-Fe and 

Al-Pd-Mn systems,[9, 10] and decagonal quasicrystals in Al-Ni-Co system.[11, 12]  Hence, 

these are the most commonly studied quasicrystals among the others. 

Quasicrystals have peculiar physical and electronic properties compared to their 

constituent elements and even compared to their crystalline cousins which have similar 

chemical compositions.[7] For example, all of the known quasicrystals are relatively brittle 

and hard. Moreover, they exhibit low electrical and thermal conductivities. Especially, as 

temperature decreases, their electrical resistivity increases. For crystalline metals or metallic 

alloys, the ratio of the resistances, ρ(4K)/ρ(300K) is about 10-3 while for quasicrystals it is 

about 2 to 10.[13] The other special properties of quasicrystals are low coefficients of 

friction, low surface energy and high oxidation resistance.[14]  

There has been a great success in resolving the atomic structure of a particular binary 

icosahedral quasicrystal, namely i-Cd-Yb.[15] However, several models have been proposed 

to describe the bulk structure of Al rich ternary icosahedral quasicrystals (i.e. i-Al-Pd-Mn 

and i-Al-Cu-Fe)[16-26] and the discussion about which bulk structural model describes the 

true atomic structure of these quasicrystals has not been settled down, yet. In these models, 

the bulk structure has been described as a network of both Mackay and Bergman type 

clusters. The Mackay cluster is a three-shell-cluster centered on a single atom. On average, it 

has 51 atoms. The Bergman is a cluster of 33 atoms, consisting of two concentric shells 

centered on a single atom as well. These two clusters sometimes overlap and sometimes 
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intersect each other. It has been shown that these two clusters cover the entire atomic 

positions except for a few percent of the atomic sites.  

 Today, whether the Bergman and the Mackay clusters are inherently stable units or 

they are just geometric entities for the convenience of describing the bulk structures for 

icosahedral quasicrystals is still a hot discussion topic in the quasicrystal field. This is 

partially due to the lack of information about how these clusters form and overlap during the 

growth. On the other hand, some physical phenomena in quasicrystals, such as electrical and 

thermal conductivity, as well as fracture and plastic deformation, can be explained easily in 

terms of localized properties of the clusters.[27-31] Alternatively, the structure of icosahedral 

quasicrystals can be described by quasiperiodic stacking of aperiodic dense flat planes along 

the fivefold axis.[20, 32, 33]   

 Quasicrystals have also drawn considerable interest in the field of surface science. 

Many state-of-the-art surface sensitive techniques including, but not limited to,  scanning 

tunneling microscopy (STM),[34-37] low energy ion scattering (LEIS),[38, 39] low energy 

electron diffraction (LEED)[32, 33] and x-ray photoelectron diffraction (XRD)[40] have 

been used to investigate their surface structures as well as their surface chemistry.  It should 

be noted that all of these techniques provide complementary information regarding to surface 

structure and surface chemistry. More importantly, these types of studies require a clean, well 

prepared surface and this is only possible if the surface is prepared in ultra-high vacuum 

(UHV) environments. 

 There are several ways to prepare a clean surface in UHV. For quasicrystals, 

fracture,[29, 41, 42] mechanical scraping [43] and sputter-annealing [34, 35, 44-46] 

techniques have been employed so far. For example, fracturing in-situ can produce a clean 

 
 



 4

surface that is free of bulk contamination but the surface may not be the true equilibrium 

surface. Mechanical scraping can remove the surface contaminants; however, it damages the 

surface structure and may induce a formation of a disordered surface phase. In sputter-

annealing method, first, the surface is bombarded with a high energy beam of noble-gas 

atoms, generally Ar+, to remove the contaminations from the surface. However, while 

cleaning, sputtering destroys the surface structure and also it changes the surface 

compositions in alloys due to the preferential removal of lighter elements. For example, 

preferential sputtering of Al from icosahedral Al-Pd-Mn and also from icosahedral Al-Cu-Fe 

quasicrystal surfaces is well known.[47, 48] Therefore, to restore the surface structure as well 

as surface composition, after the sputtering step, annealing at a proper temperature is 

necessary.[36, 49-61]  

However, the surface equilibration process involves extensive structural and chemical 

changes. For instance, annealing between 300 and 700K yields a very rough crystalline 

surface phase.[62] This phase is relatively Al deficient.[62] Annealing around 700K may 

results in an intermediate phase that is both rough and quasicrystalline.[63, 64] Above 700K, 

generally, a laterally bulk terminated quasicrystalline phase with step-terrace morphology 

forms.[32, 33, 36, 59, 61, 65-67]. On the other hand, the factors which favor some planes 

over others as surface terminations are more complex and very subtle and still a hot debate 

topic since, in the bulk, there are many dense planes and in principle none of them are 

identical.[68] To address this, in this dissertation, we present the first systematic surface 

preparation study done on the icosahedral Al-Pd-Mn system between 900 and 950K.  

For the fivefold clean surface, from the STM studies, it is known that terraces are 

separated both by 0.660 nm (L) and 0.408 nm (S) steps in a sequence that forms a part of 
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Fibonacci chain.[46, 69] The ratio of the step heights is the golden mean (τ = 2 Cos (π/5) = 

((1+ 5 )/2)=1.618…). It should be noted that sometimes, surfaces have defects which can 

lead to a non-Fibonacci sequence,[59, 60] nevertheless, the existence of two types of step 

heights is a robust property of the quasicrystalline fivefold surfaces.[36, 46, 50, 59-61, 66, 

67, 70] Using dynamical LEED in conjunction with LEIS, it has been shown that the surfaces 

of i-Al-Pd-Mn qc are laterally bulk terminated and the preferred terminating layers are Al 

rich self similar planes.[32, 33] In addition, the terminating layer is composed of two closely 

spaced planes whose total density is around 13.6 atoms/nm2.[32, 33]  

High resolution STM studies have revealed the atomic structure of the clean surfaces 

of the quasicrystals. On fivefold surface, several distinctive recurring local motifs have been 

observed. Those are star-shaped hollow sites so-called dark stars.[36, 37, 61, 66, 71-73].  It 

has been shown that the dark stars have the same orientation within the terrace, and across all 

the terraces.[37] In addition, the density of the dark stars varies from terrace to terrace.[37] 

The origin of dark stars sites has been a discussion topic so far. Based on purely geometric 

considerations, several authors[24, 36, 37] proposed that dissected Bergman clusters form the 

dark stars. However, recently, this interpretation has been challenged by the  ab initio DFT 

simulations for the high resolution STM images.[74] The calculations have suggested that 

dissected Mackay clusters should be the dark stars.[74] It should also be noted that the DFT 

calculations were not done on quasicrystals, because the aperiodic structure leads to open 

boundary conditions. Therefore, the calculations have been done for large unit-cell 

crystalline approximants. Moreover, only one type of chemical decoration for the dark star 

site has been considered in the calculations. Therefore, the conclusions regarding the 

quasicrystalline surface structure as well as the dark stars were drawn from these results. In 
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this dissertation we present the first and the most comprehensive analyses for the available 

bulk structural models of i-Al-Pd-Mn quasicrystal to shed light on this debate.    

 Besides the interesting clean surface structure, the interaction of adsorbate with the 

quasicrystalline surface is also a fascinating topic due to their intriguing symmetries and 

physical properties. There are several interesting questions one can ask, such as: Is there a 

specific adsorption site for the film nucleation? If there is, how does this film nucleate? Is it, 

in principle, possible to obtain a single element monolayer quasicrystalline film? How does 

the quasicrystalline substrate affect the growth of the film? Some of these questions have 

been partially answered. For example, based on LEED and HAS studies, Franke et al.[75] 

reported that Bi and also Sb grown on the fivefold surface of icosahedral Al-Pd-Mn and the 

tenfold surface of decagonal Al-Ni-Co formed quasicrystalline monolayer. Later, several 

research groups have performed STM investigations on the nucleation of  several adsorbates 

including, but not limited to,  Al on fivefold surfaces of i-Al-Cu-Fe,[76] and  Cu,[37, 77] and 

C60[55] on fivefold surfaces of  i-Al-Pd-Mn at very low coverage (i.e. less than 10% of a 

monolayer).   

Especially, at coverage of about 0.04 monolayer, Al adatoms formed small fivefold 

clusters (called starfish) at room temperature, and all the starfish oriented along the same 

direction in a single terrace and even across the terraces. This was the first real space 

observation for an adsorbate which adopted fivefold symmetry. In addition, the island 

density, as a function of deposition flux has also been studied while keeping the deposition 

temperature constant at 300K. And, it has been observed that island density didn’t vary from 

8 x 10-5 to 7 x 10-3 monolayer per second (ML/s).[76] The independence of island density on 

the deposition flux is a good indication of inhomogeneous nucleation in which certain sites 
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serve as nucleation sites.[78] Indeed, with the help of high resolution STM images, the 

nucleation sites for Al adatoms were unambiguously determined as dark stars.[76] Moreover, 

recent Kinetic Monte Carlo (KMC) simulations of an appropriate ‘disordered bond network’ 

lattice gas model have supported that the dark star sites are the strong adsorption sites for Al 

adatoms.[79, 80] 

Using a STM, Fournee et al.[81] studied the nucleation of Ag films on fivefold 

surfaces of i-Al-Pd-Mn at room temperature. At a coverage of 0.2 monolayer, it was found 

that from 5 x 10-4 to 5 x 10-2 ML/s, Ag island density was independent of deposition flux. 

Again like for Al adatoms, in this system, some special sites were acting as traps for Ag 

adatoms. This observation provided an additional support for the characteristics of 

heterogeneous nucleation on these surfaces. However, no high resolution STM images which 

may show the structure of the film was achieved for Ag clusters or islands. And, no 

temperature dependent experiments were done. There were still some important questions 

that need to be answered. For example, what is the smallest stable cluster size for Ag? This 

dissertation fills those gaps in the literature.    

 Fournee et al.[81] also studied the growth of Ag thin films on fivefold surfaces of i-

Al-Pd-Mn. At room temperature, the STM images indicated that as the total coverage 

increased from 0.2ML to 1ML, Ag grew vertically and formed needle-like islands.[81] At 

1ML coverage, the film roughness was higher than that of predicted for kinetically-limited 

growth where almost no interlayer mass transport is allowed.[78] This was an indication that 

the up-hill diffusion process was facile. Furthermore, from 1ML up to 5ML total coverage, 

no significant change in roughness was observed; instead, three-dimensional Ag islands 

formed at 1ML and then they spread laterally and coalesced and formed relatively flat top 
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islands.[81] All this observations have indicated that the quasicrystal surface plays an 

important role in the growth process of the films. Unfortunately, no temperature depended 

experiments for the growth of the Ag films were explored. In this dissertation, we have 

investigated and presented the growth of Ag islands on these surfaces in great detail.      

 

Dissertation Organization 

 Eight papers are included in this dissertation. The first paper, “Terrace selection 

during equilibration at an icosahedral quasicrystal surface”, is published in Physical Review 

B 71, 165411, 2005. The second paper, “Voids and pits on sputter-annealed fivefold terraces 

of icosahedral Al-Pd-Mn quasicrystals, is published in Philosophical Magazine 86, 816, 

2006. The third paper, “Comparison between experimental surface data and bulk structure 

models for quasicrystalline AlPdMn: Average atomic densities and chemical compositions”, 

is published in Physical Review B 77, 195419, 2008. The fourth paper, “Adsorption sites on 

quasicrystal surfaces: Dark stars and white flowers”, will be submitted to Journal of Physics: 

Condense Matter. The fifth paper, “Nucleation and growth of Ag islands on fivefold Al-Pd-

Mn quasicrystal surfaces: Dependence of island density on temperature and flux” is 

published in Physical Review B 75, 064205, 2007. The sixth paper, “Terrace-dependent 

nucleation of small Ag clusters on a five-fold icosahedral quasicrystal surface”, is published 

in Philosophical Magazine 87, 2995, 2007. The seventh paper, “Growth of height-selected 

Ag islands on fivefold icosahedral AlPdMn quasicrystalline surfaces: STM analysis and step 

dynamics modeling”, will be submitted to Physical Review Letters. The last paper, 

“Scanning tunneling microscopy and density functional theory study of initial bilayer growth 

of Ag films on NiAl(110)”, is published in Physical Review B 76, 195410, 2007. Following 
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this paper are general conclusions and the appendices. The first appendix reports 

supplementary materials for the third paper. The second appendix is an organized record of 

the collected STM data. The third appendix shows a brief summary of low energy electron 

microscopy studies.  
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Abstract 

We investigate the equilibration of a fivefold surface of the icosahedral Al-Pd-Mn 

quasicrystal at 900–915 and 925–950 K, using scanning tunneling microscopy. After 

annealing at the lower temperatures, there is a high density of shallow voids on some terraces 

but not on others; at 925–950 K, the void-rich terraces are much rarer. The terminations that 

are consumed by voids exhibit a distinctive local atomic configuration, called a “ring” by 

previous authors. Apparently, through growth and coalescence of the voids, a different 

termination becomes exposed on the host terraces, which also leads to a change in step 

heights at the edges of the terraces. We suggest that the shallow steps associated with the 

voids, and the ring configuration, signal a surface that is in an intermediate stage of structural 

equilibration. 

 

I. Introduction 

Quasicrystals are nonperiodic, yet well-ordered, intermetallics. Most known 

quasicrystals are icosahedral, and most contain 60–70 at. % of aluminum. Studies of their 

surfaces are motivated by the fact that the icosahedral, aluminum-rich alloys exhibit unusual 
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surface properties, including low adhesion to polar liquids and low friction.1–3 Clean surfaces 

of quasicrystals have been studied intensely, and some general principles have emerged. 

First, a rich diversity of structures can form, depending upon the history of sample treatment 

and the length scale of the structural examination. This array of surface morphologies 

includes rough surfaces,4–9 faceted voids,10 and smooth (to within a few tenths of an 

angstrom) terraces.6,8,9,11–16 The latter type of structure—flat terraces—is the topic of this 

paper. 

Second, the terraces typically exhibit a fine structure, probed by scanning tunneling 

microscopy (STM), which is consistent with bulk models of quasicrystalline structure.13,15–17 

This indicates that the lateral sin-planed atomic structure is bulk terminated, resolving a 

previous controversy over whether bulk termination of a quasicrystal was compatible with a 

flat surface.  

Third, in the bulk-terminated quasicrystal surface, only a subset of all possible bulk 

planes corresponds to surface terminations. The surface terminations are believed to actually 

be pairs of planes, separated by 0.48 Å in the bulk, but contracted at the surface to 0.38–0.42 

Å. These two planes have a combined density comparable to that of the close-packed surface 

of pure Al and a combined composition higher in Al than the bulk average.14,18–23

Fourth, the quasicrystalline terraces are separated by steps whose heights are not 

integral multiples, but rather successive multiples of τ , the golden mean (τ =2 cos(π/5)=(1 

+ 5 )/2=1.618. . . ). Reports of the step height values have ranged from 6.2 to 6.8 Å for the 

longest (L), 4.0 to 4.2 Å for the medium step (M), and 2.4 to 2.6 Å for the shortest (S), 

with uncertainties of about ±0.2 Å. (In some other papers, these three steps have been named 

L, S, and S/τ , respectively.) Here, we are not so concerned with the actual step height values 
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as with their frequencies of occurrence. Previous reports have been inconsistent. One study 

reported only L and M, arranged in a Fibonacci sequence, which implies a relative abundance 

of L/M=τ .11 In contrast, another paper noted that the L and S steps were common, and the M 

steps were rare.12 A quantitative analysis in yet another paper indicated that the relative 

abundance decreased from L to M to S, with frequency ratios L/M≈M/S≈τ .14

Fifth, the method used to produce the bulk-terminated terraces involves massive 

changes in both surface composition and surface structure. Ion bombardment at room 

temperature produces an Al-deficient phase. Annealing between 300 and 700 K yields a very 

rough crystalline surface phase (lacking discernible terraces) that is relatively Al deficient. 

There is evidence that migration of bulk vacancies to the surface contributes to this 

roughness.10 At higher temperatures, the surface usually changes to a flat quasicrystalline 

phase.24 An intermediate phase that is both quasicrystalline and rough may form around 700 

K.8 Flat crystalline phases can also form above 700 K.25–29 The factors that select between 

crystalline and quasicrystalline surface phases above 700 K are poorly understood. 

In this paper, we show that equilibration during annealing is a more complex and 

subtle process than previously thought. Even after the quasicrystalline terrace-step structure 

appears, it evolves with time and temperature. There is a selection among possible 

terminations, during which some terraces disappear, while other (slightly different) types of 

terraces survive. This evolution also affects the step heights and may explain previous 

discrepancies in the literature. 
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II. Experimental Description 

A single grain of icosahedral Al-Pd-Mn was grown by the Bridgman method. Its bulk 

composition was Al70.2Pd20.7Mn9.1, based on scanning electron microscopy and energy 

dispersive spectroscopy. The grain was sliced perpendicular to its fivefold axis and polished 

to a mirror finish, using 6-, 1-, and 0.25-mm diamond paste on Texmet cloth. The resultant 

sample was a flat wafer with an area of 6 X 5 mm2 and thickness of 1.5 mm, identification 

No. ARR-4-12-2.1.  

The wafer was then mounted on a Ta plate and put into an ultrahigh-vacuum (UHV) 

chamber equipped for low-energy electron diffraction (LEED), Auger electron spectroscopy 

(AES), STM, ion bombardment, mass spectrometry, and sample heating. A clean surface was 

gained after cycles of Ar+ sputtering at room temperature (RT) for 30 min and annealing at 

900 K for 3 h. The Ar+ ion energy was reduced from 2 to 1 keV by 0.5-keV increments in 

the first two cycles and kept constant at 1 keV during the rest of the etching process. The 

total times for sputtering and annealing were 3 and 18 h, respectively. A sharp LEED pattern 

was achieved after this cleaning process.  

After its initial cleaning, the sample was used for other types of experiments. 

Consequently, it underwent 26 sputter-anneal cycles and about 60 cumulative hours of 

annealing at 950 K in UHV. At that point, the experiments described in this paper began. 

Several observations were made after 950 K anneals. The annealing temperature was then 

successively lowered to the 900–915 K range, while several more observations were 

recorded. After this, the sample was removed, repolished, and recleaned in UHV, and more 

experiments were done in the 900–915 K range. The data reported herein were reproducible 

and consistent throughout.  
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Before each individual STM experiment, we sputtered the sample with Ar+ at 1 keV 

(2.4 μA sample to ground with +20 V bias) for 30 min and then annealed it for 3 h at a 

specified temperature in the range 900–950 K, by changing the power of the heating element. 

After annealing, the sample was cooled slowly to RT. The cooling rate from the annealing 

temperature to 700 K was controlled at about 12.5 K/min. Before annealing, the surface 

cleanliness was verified by AES. All the STM images were taken at RT with tunneling 

conditions of +0.97 V and 0.47 nA. The typical base pressure during an STM measurement 

was below 4 X 10−11 Torr. 

Temperature was monitored using an infrared pyrometer with emissivity set at 0.35.25 

Sources of error in the measurement include film deposition on the window used for 

pyrometry (due to evaporation from the sample and other sources), stray radiation from the 

filament heater, and thermal gradients across the (poorly conductive) sample. Based upon 

comparisons with two sets of K-type thermocouples located at different spots on the sample 

holder and upon pyrometer readings taken from different points on the sample itself, we 

estimate that the accuracy in sample temperatures reported here is about ±25 K, and this 

should be kept in mind when comparing temperatures reported by other laboratories. 

Reproducibility is better, although it still is affected by thermal gradients within the sample 

and hence by the region chosen for imaging. 

 

III. Experimental Results and Interpretation 

Figure 1(a) shows a large-scale STM image—5000 Å X 5000 Å—of a 5f Al-Pd-Mn 

surface, after annealing at 900 K for 3 h. It is clear that there are two types of terraces. 

One type has many pockets, or voids, and hence has a mottled appearance. The other type is 
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smooth and nearly void free. Figures 1(b) and 1(c) also illustrate the existence of these two 

types of terraces, after annealing at 915 K for 3 h. The steps in Fig. 1 fall into the three 

known groups identified in Sec. I as L, M, and S. Almost all of the voids on the 

mottled terraces are bordered by S steps.  

Figure 2(a) is a 1000 Å X 1000 Å image from a surface prepared in a different 

experiment, but under nominally identical conditions. Four layers are visible and are labeled 

1–4, with layer 1 being topmost. Figure 2sad is essentially an im-age of a very large, mottled 

terrace, in which about half of layer 1 has been removed and half of layer 2 has been 

exposed. In a localized region of Fig. 2(a), deeper layers—3 and 4—are also visible. Figure 

2(b) is a line profile across the arrow in Fig. 2(a). This shows that layers 1 and 2 are 

separated by S steps, whereas layers 2 and 3 are separated by an M step.  

As an aside, note that the height values that we report for the L, M, and S steps, such 

as the values given in Fig. 2(b), are not extracted from line profiles, since we find that such 

values are unreliable. Presumably, this is due to short-scale roughness on the terraces, and 

longer-range curvature sometimes occurring near the step edges. Both effects are visible in 

Fig. 2(b). Instead, step height values are much more precise if they are extracted from a 

histogram of pixel heights in a rectangular area that encompasses the step and adjoining 

terraces, a procedure developed originally by Cai et al.14

Figure 3 reveals regions of this same surface at higher resolution. Panels (a), (b), and (c) are 

taken from layers 1, 2, and 3, respectively. A number of local motifs, previously identified in 

other work,16 can be seen in each of the three layers. Following previous nomenclature,16 

these are labeled as white stars, dark stars, and white flowers. In Figs. 3(a) and 3(c) (layers 1 

and 3), certain additional local configurations look like rings. Rings cannot be found on layer 
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2 [panel (b)]. Therefore, we postulate that the mottled terraces belong to the class of surfaces 

that include the “ring” planes in previous previous work by Papadopolos et al.16 and that the 

nearly-void free terraces belong to the class of surfaces that include the “clear” planes and 

“Schaub” planes.16 Figure 4(a) shows the terrace structure that results after annealing at 925 

K. Three points are noteworthy. First, at this higher temperature, the mottled terraces are 

much less frequent, and the surviving terraces are generally larger. Second, a number of 

small islands are visible on the middle terrace, particularly within the oval. These small 

islands are 2.5 Å high and are probably remnants of a void-rich termination that was present 

at an earlier stage. In other words, this entire terrace was probably 2.5 Å higher, earlier in its 

evolution. Third, pits are visible on the middle terrace, but they are different than the voids 

on the mottled terraces represented in Fig. 1, because these depressions are circumscribed 

by M-type steps. Deeper levels—about 2.5 Å lower—are also becoming exposed at the 

bottoms of the pits. These aspects of the pits are illustrated by the line profile in Fig. 4(b). 

The sharp dip at x<1400 Å corresponds to a void at the bottom of the larger pit; its depth and 

shape, however, are not resolved completely because it is small relative to the size of the 

image. Apparently, void-rich terminations comprise the floors of these M-type pits. 

The fine structure on relatively smooth terraces, such as those in Fig. 4(a), is 

illustrated in Figs. 5(a) and 5(b). No rings can be found. Hence, annealing to higher 

temperature significantly reduces the occurrence of the terminations that contain ring 

configurations.Upon heating to 950 K, the data are very similar to those at 925 K. Some 

void-rich terraces can still be found, but they are significantly less abundant than at the lower 

range of annealing temperature, 900–915 K. 
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IV. Discussion 

Our main postulate is that, by annealing to 900–915 K and 925–950 K, we are 

capturing the surface in two different stages of evolution.  

First, consider the 900–915 K surface. The data (e.g., Fig.1) show that the voids are 

bordered by S steps. This means that the surface must evolve as illustrated in Fig. 6, which is 

a schematic cross section of the surface. Loss of material from the crosshatched regions first 

creates the voids and gives the terrace a mottled appearance. The growth of the voids 

increasingly exposes a lower termination. When the voids have completely overtaken the 

terrace, its level is lowered by the step height of the voids, S. Hence, the lowering 

of the terrace changes the down-going step (the one in the left side of Fig. 6) from L to 

L−S=M, and the up-going step sin the right sided from M to M+S=L. The step heights L 

and M are chosen arbitrarily for illustration.  

The atomic nature of the void-rich versus (nearly) void-free terminations can be 

identified on the basis of local configurations in the STM images. The critical difference is 

that the void-rich terminations display the ring configuration, while the others do not. 

Papadopolos et al.16 related STM images to specific types of terminations in their 

three-dimensional tiling model of bulk structure. Within the context of that model and in 

agreement with experimental work from many groups (as reviewed in Sec. I), all 

terminations consist of pairs of planes separated (in the bulk) by 0.48 Å. Furthermore, the 

combined density of these two planes is constant. 

 In the work of Papadopolos et al.16 two different types of terminations could be 

identified in the STM data, based on different local configurations. They interpreted these as 

terminations with different relative densities in the top and underlying plane (the q and b 
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plane, respectively, in their nomenclature). In the termination where the density of the top 

plane is less than the density of the second, the rings shown in Figs. 3(a) and 3(c) were 

predicted and observed. In the termination where the densities were reversed, no rings were 

observed and the planes were called “clear.” The combined densities of the two planes was 

effectively constant.  

The relative densities could provide a rationale for a slightly lower stability of 

terminations containing the ring configuration, since higher density is known to be associated 

with lower surface energy—in elemental metals.30–32 It has been proposed that this rule also 

applies to quasicrystals.22 Since the termination containing rings has a higher atomic density 

in the very outermost plane, it would have a lower stability. Differences in chemical 

composition could also contribute to different stabilities of different terminations.  

Two detailed structural analyses of this system have been carried out, using two 

different techniques (low-energy electron diffraction and x-ray photoelectron diffraction) but 

both based upon electron scattering.18,19,23 Both analyses found that a certain group of 

terminations gave the best agreement with experiment, but another group of terminations 

gave moderately good agreement with experiment. This second group included terminations 

in which the outermost plane had a lower density than the underlying plane, analogous to the 

ring-plane terminations of Papadopolos et al.16 The electron scattering analyses left open the 

possibility that this second group made a minor contribution to the experimental electron 

scattering data and hence made a minor contribution to the total surface area, in accordance 

with our model. 

Consider the sequence of morphological changes that the surface undergoes. This 

sequence is illustrated schematically in Fig. 7. Starting from a rough surface without 
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discernible terraces, extensive mass transport allows terraces to emerge between 700 and 900 

K. Apparently, there are kinetic limitations in this stage that lead to different types of terraces 

with different stabilities. At 900 K, new processes begin which lead to selection among the 

terrace terminations.There are two possibilities for these new processes. 

The first is evaporation into the gas phase. Schmithüsen etal.26 reported that 

evaporation of Mn begins at 900 K and of Al at 1000 K, this order corresponding to the order 

of the elemental vapor pressures. Hence, evaporation at these temperatures is 

sonstoichiometric. The irreversible loss of Mn at 900 K could trigger rearrangements on the 

terraces that lead to the voids. At 900 K, the remaining Al and Pd could diffuse away to 

segregate at step edges or defect sites, or to form crystalline surface phases. 

The second possibility is that new diffusion processes become activated at 900 K. 

However, mass transport is already extensive below 900 K—so extensive that the terraces 

form. For example, the root-mean-square displacement of a bulk Mn atom sthe slowest 

diffuser in this alloyd is 25 and 50 mm, at temperatures of 900 and 950 K, over 3 h.33 The 

fact that this displacement is very large and differs only by a factor of 2 over the temperature 

range 900–950 K supports the hypothesis that mass transport is extensive already at or below 

900 K and does not change dramatically between 900 and 950 K. It has been suggested that 

surface modification due to migration of bulk defect vacancies also begins in a significantly 

lower temperature range.10 Hence, it seems unlikely that new diffusion processes begin 

around 900 K. 

An entirely different interpretation might be that the void-rich terraces do not reflect 

the relative stability of different terminations, but rather are the result of vacancies migrating 

from the bulk to the surface and condensing there.10,34,35 Indeed, there is evidence that this 
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type of diffusion eventually produces a vacancy-depleted near-surface region that is a 

few microns deep.34 In that case, one would expect the void-rich terraces to occur early in the 

life of the sample and to disappear over time. However, this is the opposite of the 

sequence of our experiments, wherein most of the higher temperature observations of void-

free terraces preceded the lower-temperature observations of void-rich terraces. See Sec. II. 

Furthermore, in order to account for our observations, the bulk vacancies would have to 

accumulate preferentially on specific terraces. Taken together, these facts make the vacancy 

condensation hypothesis seem unlikely. It is commonly accepted that the “best” surfaces on 

i- Al-Pd-Mn, for purposes of STM work, are produced by annealing at 950–975 K or even 

higher. This falls above the temperature range where the voids are most abundant, 

900–915 K. (There may be some small overlap when the probable uncertainty of ±25 K, 

described in Sec. II, is taken into account and applied both to our own temperatures and to 

those from other laboratories.) Hence, one would expect that the void-rich terraces are rather 

rare on the “best” surfaces. Perhaps this is why the evolution of terrace structure has 

gone unnoticed until now. It is interesting to note that some narrow, void-rich terraces are 

discernible in STM data published by Ledieu et al., notably Fig. 1 of Ref. 22.  

 

V. Conclusion 

The terraced, bulk-terminated quasicrystal undergoes equilibration at 900–950 K, in 

which certain terraces are modified by the growth and coalescence of voids. This process 

leads to a change in step heights, particularly a reduction in the density of the S steps. The 

process also leads to a reduction of the terminations that exhibit local ring configurations. 

We postulate that both the S steps and the local ring configurations occur on terminations that 
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are higher in energy than the others (metastable). A new process—one that was not operative 

during initial terrace formation—takes effect at and above 900 K. This process, which may 

be evaporation into the gas phase, facilitates selection among different terminations. 

The ring terminations may be less stable because of subtle differences in the densities of the 

top two planes. Specifically, in the ring terminations the outermost plane is less 

dense than the (very-close) second plane. In the other terminations, the densities of these two 

planes are reversed. The combined density of the two planes is nearly constant. A minor 

contribution from terminations with relative densities corresponding to the ring termination 

would be consistent with previous structural analyses that were based upon dynamical 

electron scattering. 
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Figure Captions 

Figure 1. STM images of 5f-Al-Pd-Mn, illustrating the existence of void-rich and nearly-  

void-free terraces. (a) 5000 Å X 5000 Å, after annealing at 900 K. (b) 5000 Å X 

5000 Å, after annealing at 915 K. (c) 5000 Å X 3650 Å, after annealing at 915 K. 

Figure 2. (a) 1000 Å X 1000 Å STM images of the 5f-Al-Pd-Mn surface after annealing at  

 900 K. (b) Line profile across (a). For step-height evaluation, see text. 

Figure 3. Magnified regions of the three layers labeled in Fig. 2. All images have been  

filtered. White circles and labels point out local features identified in Ref. 16. (a) 77 

Å X 77 Å STM image of layer No. 1 in Fig. 2(a). (b) 77 Å X 77 Å STM image of 

layer No. 2 in Fig. 2(a). (c) 77 Å X 77 Å STM image of layer No. 3 in Fig. 2(a). 

Figure 4. (a) 5000 Å X 5000 Å STM image after annealing at 925 K. (b) Line profile as  

 indicated by the arrow in (a). 

Figure 5. High-resolution views of two void-poor terraces, like those shown in Fig. 4(a). The  

 images are both 150 Å X 150 Å in size and have been filtered. 

Figure 6. Schematic depiction of the proposed model for terrace selection at 900–915 K. 

Figure 7. Schematic depiction of the proposed model for evolution of long-range surface  

 morphology at 700–950 K. 
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VOIDS AND PITS ON SPUTTER-ANNEALED FIVEFOLD TERRACES OF 
ICOSAHEDRAL AL-PD-MN QUASICRYSTALS 
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Abstract 

Our scanning tunneling microscope studies on clean surfaces of fivefold icosahedral 

Al70.2Pd20.7Mn9.1 reveal that, after annealing at 900 K, two types of flat depressions are 

visible on terraces: voids (small, shallow, flat-bottomed depressions bordered by 2.5Å steps) 

and pits (deeper, and often larger, depressions). They are different not only in their 

dimensions but in their behavior: voids preferentially nucleate on some of the terraces and, 

after annealing at 925 K, their coalescence and growth leads a new type of termination to be 

exposed. Pits, however, do not destroy the terraces on which they exist, under the 

experimental conditions. At the bottom of 4.1Å-deep pits, 2.5Å -deep voids nucleate, so that 

the total depth of the pit is 6.6Å. We propose that 2.5 Å void-rich terraces are metastable 

terminations, and that these metastable terminations are also exposed at the bottom of the 4.1 

Å -deep pits. 

 
 
 
Introduction 
 

Clean surfaces of single-grain samples of crystalline and quasicrystalline metals 

typically exhibit terrace-step structures, with terrace widths on the order of102–103Å. Hence, 
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any macroscopic or even mesoscopic area encompasses many terraces and steps. In a 

crystalline material, terraces are usually identical (except perhaps for rotational domains), 

and are energetically degenerate, because a single kind of termination is strongly favored 

over a small and finite number of other possibilities. Within this context, surfaces of 

quasicrystals (specifically, of icosahedral quasicrystals) are fundamentally different than 

crystalline surfaces. This difference arises from the fact that many terminations are very 

similar, but not identical, either in structure or composition. Hence, a macroscopic surface 

area of an icosahedral quasicrystal presents an ensemble of different terminations spanning a  

distribution of surface energies. One could expect that this distribution would narrow during 

equilibration. In this paper, we focus on experimental evidence that the quasicrystal surface 

does evolve continuously with time above 900K, peeling away different terminations to 

expose others, and that different terminations have different stabilities. Hence, the data 

support the existence of an ensemble of terminations with different surface energies. 

The ability to prepare a clean icosahedral quasicrystalline surface in terrace-step morphology, 

with bulk-termination, is now well established.1–4 The present paper deals with the fivefold 

(5f) surface of icosahedral (i) Al–Pd–Mn. On this surface, and also on the 5f surface of i-Al–

Cu–Fe, the terraces are generally separated by three kinds of steps, with heights of about 

6.6Å , 4.1 Å and 2.5 Å . For simplicity, we refer to them here as 6-, 4- and 2-steps, where the 

number is the first significant digit in the value of the height. The 6-step can be considered a 

combination of 4+2, and higher combinations are also observed.4 Their abundance depends 

upon sample preparation conditions. 

In this paper, the evolution of terraces is characterized by the appearance and growth 

of flat-bottomed depressions, which are bounded at their edges with one of the three common 
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values of step height. Depressions with different step-edge values appear to have different 

behaviors. To distinguish between the two main types of behavior, depressions bounded by 

2-steps are called voids, while depressions bounded by higher steps are called pits. Pits 

bounded by 4- and 6-steps are referred to as 4-type and 6-type pits, respectively. The 

formation of these features at elevated temperatures may be triggered by evaporation 5, or by 

diffusion of bulk vacancies to the surface.6

 
Experimental Description 
 

Our sample is a single grain of i-Al70.2Pd20.7Mn9.1. The details of sample preparation 

and characterization are given elsewhere.7 In brief, we sputtered the sample with Ar+ at 1 

keV for 30 min and then annealed it for 3 h in the range of 900–950 K. Each set of data is 

obtained in a single sputter-anneal cycle, that is, the sample is never annealed at sequentially 

higher temperatures in a single run. After heating, the sample is cooled down to 700K at a 

controlled rate of 12.5Kmin-1. All of the STM images are taken at room temperature under 

tunneling conditions of 0.47 nA and +0.97 V. They are interpreted as reflecting a  

morphology that was formed at elevated temperature, and frozen in place during cooling. The 

base pressure of the UHV chamber throughout the STM experiments is below 4 X 10-11 Torr. 

 

Experimental Results and Discussions 

We have reported that some terraces contain high densities of voids, after annealing 

in the temperature range 900–915K.7 An example is shown in figure 1, which is a 10000Å X 

10000 Å STM image of the 5f i-Al–Pd–Mn surface, after annealing at 900K for 3 h. As seen 

from figure 1 there are two kinds of terraces. One type has many depressions, which give it a 
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rough appearance. The other type is nearly free of depressions, and hence is relatively 

smooth. Three types of steps (6, 4 and 2) can be found in figure 1. Nearly all of the 

depressions on the rough terraces are bordered by 2-steps. 

While this provides a description of the two main types of terrace appearance, it 

should be noted that some terraces bridge these two extremes. For instance, in the terrace 

below the void-free example in figure 1, two small depressions are visible, and in the next 

terrace down, a few tens of depressions are visible. These depressions are the 2-type voids. 

We have also reported that annealing at higher temperatures (around 925–950 K) 

significantly reduces the void density.7 We interpreted this to mean that at higher 

temperatures, voids coalesce and hence eliminate the termination that was previously 

exposed on the void-rich terrace. Evidence for this is shown in figure 2a, which is a 5000Å  

X 5000 Å STM image obtained after annealing at 925K for 3 h. The 2.5 Å high islands 

within the oval suggest the remnants of a void-rich termination. 

These data suggest that the void-rich terminations are relatively unstable; they 

form at low temperature (<900 K), then are attacked by voids (900–915 K), and eventually 

disappear at higher temperature (925–950 K). Furthermore, the fact that the void density is 

variable suggests that there is a continuum of stabilities in the exposed terminations. 

The void-rich terraces are almost always bordered by 6-steps in the downward 

direction. This means that coalescence of the voids lowers the terrace and converts 

the downward step from 6-type to 4-type. In fact, if the void-rich terraces were bordered by 

4-steps in the downward direction, then void coalescence would result in a new step with 

1.5Å height. In our experiments, we have never observed terrace steps with 1.5Å height. 

(Void coalescence would not result in a 1.5Å step if two void-rich terraces were immediately 
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adjacent and evolved simultaneously, in which case the step separating them would simply 

remain constant in height. We have observed this phenomenon once, but it does not seem 

to be common.) 

High-resolution STM images have revealed that a local atomic configuration, 

ring, distinguishes the terminations consumed by the voids.7 In the Papadopolos– 

Kasner geometrical model of 5f icosahedral Al–Pd–Mn ,3, 8, 9 two different kinds of 

terminations are identified based on the different local atomic configurations. 

In the terminations containing ring local configurations, the density of the topmost planes can 

vary considerably [9] although the sum of the densities of the top two planes (which are 

separated by ≤0.5Å ) is constant.3 This difference in densities may provide a rationale for the 

relative instability of a subset of terminations. 

The second type of depression is the pits. These are the predominant type of 

depression at the higher annealing temperature, 925–950 K, although they are never 

as common as are the voids after the lower annealing temperature, 900–915 K. An example 

is shown in figure 2a, where a pit is traversed by the white line. There, a 4-type pit is in the 

middle of the terrace, but it contains some small, deeper (darker) features. The nature of these 

deeper features is revealed by figure 2b, which is a line profile corresponding to the white 

line in figure 2a. This shows that some of the regions at the bottom of the pit are 2.5Å deeper 

and the total depth at the lowest point in the pit, relative to the majority of the terrace, 

is 6.6Å. In our work, this is a common observation: 4-type pits have 2-type voids in their 

floors. 

We interpret this to mean that terrace evolution also continues at the bottoms 
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of the 4-type pits. This could mean that the planes exposed by the formation of 4-type pits are 

relatively unstable. Based upon data such as shown in figure 1, one would expect the 2-type 

voids at the bottom of the pit to grow faster than the 4-type pit itself, leading to formation of 

a 6-type pit. We do observe occasional 6-type pits, although they are even more rare than the 

4-type pits, under the conditions of our experiments, after annealing in the range 925–950 K. 

We postulate that they evolve from 4-type pits. 

The pits never accumulate preferentially on certain terraces, as do the voids. 

That is, we never observe terraces that are rich in pits, while others are not. Thus, there is no 

evidence that the pits aggressively consume the terraces, as do the voids. 

The experimental data reveal one other trend concerning the pits. The terraces 

containing 4-type pits (with 2-type voids in the floor) are usually bordered by 6-steps in the 

downward direction. This means that if the entire depression in the terrace was to grow 

indefinitely, the terrace would disappear entirely; it would not simply convert to a different 

termination, as in the case of the voids.  

Our model for the evolution of these surfaces is summarized in figure 3. The 

evolution of a void-rich terrace to a void-free terrace is shown on the left. Some islands, 

remnants of the previous termination, are illustrated on the void-free terrace, corresponding 

to the data of figure 2a. The step heights that border the terrace change. The evolution of a pit 

is shown on the right. For both the terrace and the pit, the key step in its evolution is the 

growth and coalescence of voids, which appears to be triggered by annealing to temperatures 

in the range 900–950 K. 
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Conclusions 

The evolution of this 5f icosahedral surface at elevated temperature is rich and 

complex. It appears to proceed via the formation of voids and, to a lesser extent, of pits. 

Voids (depressions with 2.5Å walls) signal metastable terminations. The void density across 

different terraces suggests a distribution of terminations with different stabilities. Pits with 

4.1Å walls expose a metastable termination at the floor, which later will be destroyed by the 

formation of voids, leading to pits with 6.6Å walls. 
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Figure Captions 

Figure 1. 10000Å X 10000 Å STM image of 5f i-Al–Pd–Mn after annealing at 900 K. 
 

Figure 2. (a) 5000 Å X 5000 Å STM image of 5f i-Al–Pd–Mn after annealing at 925 K, 

 (b) line profile as indicated by a white line in (a). 

 

Figure 3. Schematic of the proposed evolution of (a) terraces and (b) pits, primarily as a 

function of temperature. The terraces and pits are shown in cross-section, that is, the 

5f axis is vertical. The numbers give the first significant digit of the step height. 
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COMPARISON BETWEEN EXPERIMENTAL SURFACE DATA AND BULK 

STRUCTURE MODELS FOR QUASICRYSTALLINE AL–PD–MN: 

AVERAGE ATOMIC DENSITIES AND CHEMICAL COMPOSITIONS. 

 

A paper published in Physical Review B 

 

Baris Unal, C.J. Jenks, and P.A. Thiel 

 

Abstract 

We have examined bulk structure models for icosahedral Al–Pd–Mn in terms of the 

densities, compositions, and interplanar spacings for the 5-fold planes that might represent 

physical surface terminations. We focus on four models that contain no partial or mixed 

occupancies, but some comparison is made to a fifth model containing such sites. Each of the 

four models contains paired planes (layers) that can be separated into two main families on 

the basis of three features: the relative densities of the two planes, the gap separating the 

layer from the nearest atomic plane, and the Pd content in the topmost plane. The 

experimental data and other arguments lead to the conclusion that the family with no Pd in 

the top plane is favored. Finally, all models show that correlations should be expected 

between the heights of steps that delineate terraces, and average compositional/structural 

features of the terraces.  
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I. Introduction 

Quasicrystals are solid materials that are well-ordered, but not periodic.1-3 They 

typically exhibit evidence of a forbidden rotational symmetry. Their intriguing atomic 

structure engenders unusual physical properties, including surface properties such as good 

oxidation resistance and low friction. This is well-established, at least for the Al-rich, 

icosahedral (i-) intermetallics, which comprise a large fraction of the hundred or so known 

quasicrystals.  

This type of quasicrystal has proven to be a rich and versatile platform for investigating 

basic surface phenomena, such as film growth and friction.4-8 This is largely because the bulk 

atomic structure propagates up to the surface plane, provided that surface preparation 

conditions are chosen appropriately.4-8 Furthermore, clean surfaces with flat terraced 

morphologies such as that shown in Fig. 1 can be prepared using fairly standard techniques.4-

8 

Nonetheless, uncertainty remains about significant aspects of the surface structure. This 

is true in part because different models exist for the bulk structures of these quasicrystals: 

about 7 different bulk models exist for i-Al–Pd–Mn,9-20 although not all have been derived 

independently. Until now, each surface experiment has been compared with a single bulk 

structural model.5, 7, 17, 21-32 This limited approach leaves open the question of whether 

different models might yield different degrees of agreement with experimental surface data. 

The present paper is the first to provide an analysis or comparison of measurable surface 

properties that are predicted from different models.  
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Another source of uncertainty about the surface structure lies in the fact that within 

even a single model, there are a large number of bulk planes that can serve as the surface 

termination—in principle, no two planes are identical.13, 33 The solution to this conundrum 

was originally recognized by Boudard et al.13 and later exploited by Gierer et al.,22, 23 who 

realized that the bulk structure can be classified into groups of self-similar planes, and that 

one or more groups are probably favored over others as surface terminations. At present, 

there is a debate as to which group of planes is favored.29, 34, 35   

A third subtlety arises from the different emphasis that can be placed on the two main 

components of ‘structure:’  the atomic positions and their chemical decorations. When 

comparing experimental data with bulk models, atomic positions have often been 

emphasized,24, 26, 27, 29, 31 but chemical identities are important as well, particularly for 

understanding chemical reactivity of surfaces.  

This paper deals with the long-range, average surface structure and surface composition 

of quasicrystals. Our main goal is to find and differentiate among viable terminations for the 

5-fold surface of i-Al–Pd–Mn, and to see how such terminations vary among different 

structural models. (Because i-Al–Cu–Fe and i-Al–Cu–Ru are considered isomorphic with i-

Al–Pd–Mn, some data for their 5-fold surfaces are included as well.) We choose the surface 

with 5-fold symmetry because it has been documented more extensively than the other high-

symmetry, icosahedral surfaces. The strongest, most consistent experimental data lead to the 

conclusion that three families of planes are possible surface terminations. We discuss the 

similarities and differences between these families, and conclude that one particular family is 

more likely than the others. We also analyze whether there is a correlation between the 

characteristics of a termination (terrace), and the height of the step which bounds it.  
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In the following section, we introduce the bulk structure models. In Section III we 

define the two main families of possible terminations, and subsequently compare them with 

respect to atomic densities, gaps between planes, and chemical compositions. These three 

factors are known to affect or reflect surface stabilities. We then compare the two families 

with regards to cut clusters. In Section IV we introduce a third (minority) family. Section V 

gives some ideas on surface equilibration and how that may affect the surface terminations. 

Section VI presents a non-deterministic model, and Section VII points out correlations 

between characteristics of terminations, and heights of adjoining steps. 

II. The Bulk Structure Models 

The first structure model reported for an icosahedral quasicrystal was based on 

neutron diffraction data for i-Al–Cu–Fe.36 With time, it was modified and became known as 

the Katz-Gratias (KG) model.11, 12  Second, using X-ray and neutron diffraction, Boudard et 

al.13 constructed a bulk structural model for i-Al–Pd–Mn, and this is commonly referred to as 

the Boudard model. Although its structure was mainly based on the KG model, the Boudard 

model originally contained unreasonably short bond lengths between some pairs of atoms. 

Therefore, it was slightly modified to alleviate this problem. In this work, we use the 

modified version.23 Recently, using the skeleton of the KG model, Quiquandon  and Gratias  

(QG) proposed another global structural model  for both i-Al–Pd–Mn and i-Al–Cu–Fe 

quasicrystals20 based on the previous neutron36  and X-ray13 diffraction data, combined with 

magnetic properties. The fourth model used in this paper was proposed by Papadopolos and 

Kasner (PK).16, 18  

The above four models contain no sites with mixed or partial occupancy. Models 

without such sites are sometimes called ‘deterministic’ within the quasicrystal community. 
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These four models are analyzed in this paper. Non-deterministic models have also been 

reported by Elser9 and by Yamamoto.10 In Sec. VI, we include some analysis of the 

Yamamoto model as well.  

Each of the four deterministic models was originally derived in six-dimensional (6D) 

space. The structures analyzed here are three-dimensional (3D) slabs. The atomic coordinates 

within the slabs were provided by authors of the respective models, either directly (by private 

communication) or indirectly (by posted information on a public web site). Table I gives 

information about the compositions and sizes of the volumes that were analyzed in this work. 

It should be noted that each analyzed volume was selected in a way that areas of each 5-fold 

plane in that slab were the same within a factor of 2. For this reason, the analyzed volumes 

did not always encompass the entire volume available from the source. In calculating average 

quantities, the characteristics of each plane were weighted according to its area, although we 

tested different weighting schemes and found that average quantities varied by less than 2%. 

Figure 2 shows an example of the density and composition of planes of atoms, versus 

their location (x coordinate) in one of the deterministic models (KG). It is assumed that 

vacuum is on the right and bulk solid is on the left, i.e. a viewer looks “down” at a 5-fold 

surface plane from right to left. Independent of model, most of the distances (gaps) between 

any two adjacent planes take values of 0.048, 0.078 and 0.156 nm. Gaps of 0.030 nm can 

also be found, but rarely and only between planes with very low density. The four 

deterministic models are very similar with regard to atomic positions and planar densities, 

and they are virtually identical when represented in the style of Fig. 2. Figures showing the 

other three models in the same fashion are given in the supplemental materials.37 
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The reason for the similarity between the deterministic models can be found in their 

6D representations. The 6D space is conventionally divided into two three-dimensional (3D) 

subsets, called physical or parallel space, and inverse or perpendicular space. 1, 3 

In perpendicular space, each bulk structural model has at least  three atomic surfaces  

(also called acceptance domains, or occupation domains) which contain information about 

the positions of the atoms and their chemical identities. The sizes and the shapes of the 

atomic surfaces differ from each other within a given model. Indeed, most of the atoms are 

confined in two large atomic surfaces while a small fraction of atoms are in the third atomic 

surface.12, 13, 20, 30 In perpendicular space, the atomic surfaces are 3D objects composed of 

several concentric shells. The shape and the size of the shells vary from model to model, as 

well as their chemical decoration. However, in all of the bulk structural models, the two main 

atomic surfaces are located at the same two kinds of nodes in the 6D lattice. For example, in 

the Boudard model,13 one of the large atomic surfaces is located at the (000000) or n0 node 

while the other large one is centered at the (100000) or n1 node. This is a robust property for 

all the deterministic models discussed in this paper. (See Table I in Papadopolos et al.38 for 

comparison of the nodes in several 6D models).  The location of the third atomic surface is 

model dependent but since its contribution is much smaller than the others we will not 

discuss it here.  

By projecting the atomic surfaces from 6D space to 2D space following known 

procedures, the planes perpendicular to any direction can be generated.39 Our interest here is 

in the planes orthogonal to any 5-fold axis. It has been reported that each 5-fold plane is 

generated by only one atomic surface.27, 30 Therefore, since all the bulk models have the main 

two atomic surfaces at the same nodes, each 5-fold plane can be classified according to their 
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atomic surfaces in all those models. In addition, the densities and compositions of the planes 

depend very much on the part of the atomic surfaces from which the planes are generated.27 

For example, in the KG model, there are dense 5-fold planes that contain only Al atoms. This 

means that these planes are formed by the central part of the atomic surface at (000000) 

nodes since the atomic surface at these nodes has only Al atoms.27 The other dense planes 

contain Al, Pd and Mn atoms so those planes are generated from the central part of the 

atomic surface at (100000) nodes. Projections from the periphery of any atomic surface will 

result in less dense planes.  

 

III. The Two Main Families 

Several experiments have shown that the preferred terminations of 5-fold surfaces of 

i-Al–Pd–Mn and i-Al–Cu–Fe exhibit a structural fingerprint. That is, they consist of two 

dense planes (a “layer” herein) that are closely spaced. This has been deduced from analysis 

of intensity-voltage (I-V) data in low energy electron diffraction (LEED),22, 23, 25 from X-ray 

photoelectron diffraction (XPD),40 from low-energy ion scattering (LEIS),41 and from X-ray 

scattering.42, 43 The spacing between the planes at the surface is about 0.04 nm, a contraction 

of 20% from the bulk value of 0.05 nm.  

Another useful input is the heights of steps on surfaces exhibiting terrace-step 

morphology, such as shown in Fig. 1. A number of groups have reported heights of 0.660 nm 

(L) and 0.408 nm (M), based on STM results for the 5-fold surface of i-Al–Pd–Mn.  SPA-

LEED analysis of step heights have shown similar values.44 Analogous values have been 

reported for 5-fold i-Al–Cu–Ru and i-Al–Cu–Fe. Step heights that are combinations of L and 
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M have also been observed.31, 45 The L and M heights sometimes, but not always, constitute a 

Fibonacci sequence in reported STM images.31, 46, 47  

In selecting viable surface terminations from the bulk structure models, we only 

consider layers as defined above. Furthermore, the layers must be separated from adjacent 

planes by L and M distances, or by linear combinations of L and M. Layers that are viable 

terminations are labeled at the bottom of Fig. 2 with brackets. They fall into two distinct 

families or sets. For reasons presented later, we call them Pd- (without Pd) and Pd+ (with 

Pd). Note that if the volume is inspected from the opposite direction (with vacuum on the 

left), then the Pd- terminations become Pd+ terminations, and vice versa. Analyzing from 

both directions increases the number of terminations in each set, which we employ to 

maximize the statistical significance of our conclusions. An example of an atomic plane is 

shown in Fig. 3. 

Below, we analyze four aspects of these two families. The first three of these are 

known to influence or reflect surface stability in crystalline materials: Atomic densities, 

interplanar spacings, and chemical compositions.  The atomic density is covered by Bravais’ 

rule, which is an empirical generalization. It states that surface planes with high two-

dimensional densities, and correspondingly small interplanar spacings, are most common 

(although exceptions exist). This is usually taken to mean that these surfaces are most 

stable.30 Indeed, calculated surface energies of a single element in the solid phase are usually 

lowest for the hexagonally close-packed surface.48 In alloys, one expects chemical 

composition to also play a major role, which can be predicted to first order from the surface 

energy of the constituent elements. In the quasicrystals under consideration here, Al has a 

surface energy that is lower than that of the transition metals.  For example, the surface 
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energy of Al is 1.2-1.3 J/m2, whereas that of Pd is 1.9-2.1 J/m2.48  Thus, if atomic densities 

are equal, one would expect the Al-richest planes to be preferred terminations. Both density 

and composition may be reflected in interplanar gaps, then, with larger gaps corresponding to 

more stable terminations.  

 

A. Atomic densities 

Densities, both of planes and layers, are shown in Table 2. Consider first the total 

density of the terminating layer. This is very similar for the two families. For all models, this 

ranges from 13.1 to 14.3 nm-2, with an average of about 13.6 nm-2. Turning to individual 

planes, the average density of the topmost plane is clearly different for the two families; it is 

about 7.6 for the Pd- set, and 6.2 for the Pd+ set, with a range of 4.3 to 9.1 nm-2.  The 

numbers reflect different relative densities of the two top planes in the two families. About 

70% of layers in the Pd- set have top planes that are more dense than the plane that is 0.05 

nm beneath, while about 70% in the Pd+ set have top planes that are less dense. This 

complementarity stems from the fact that any given layer can belong to either family, 

depending only upon viewing direction as noted above.  

Experimental data are currently insufficient to distinguish between the two families 

on the basis of relative or absolute densities. A value of 13.5 nm-2 is frequently quoted from 

the LEED I-V analysis,22, 23 for the composite density averaged over many terraces.22 

However, this value actually rests upon the assumption of a particular bulk structure model 

(the modified Boudard model). The number was calculated from the densities of planes that 

provided the optimal fit to the experimental data within that model, and hence cannot be 

regarded as a model-independent value. Another potential source of atomic densities is STM, 
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but several assumptions and ambiguities are involved in this approach too.49 One problem is 

that an image of a single terrace may not represent the ensemble average. In our experience, 

different terraces are more or less amenable to high-resolution imaging. It is natural to select 

terraces that provide the best images, but this may result in selection of non-representative 

terminations (e.g. those with lowest density in the top plane might provide poorer images). 

Keeping these reservations in mind, numbers can be derived from STM. An atomic density 

of 8 nm-2 has been reported for the top plane,31 and values of about 4 nm-2 can be derived 

from other images.27, 50 These values fall within the range of densities (4.3 to 9.1 nm-2) of the 

topmost plane for either the Pd- or the Pd+ set in the models. See Table II. (Comparison with 

average values is not useful since the available STM data do not provide averages.)  

 

B. Gaps Between Planes 

A second point of comparison between the two families is the width of the gaps that 

are cleaved to form the surface. From Fig. 2, it can be seen that all of the Pd- terminations 

cleave the bulk at 0.156 nm wide gaps, the widest possible spacing between two adjacent 

planes. (This value of 0.156 nm is not the step height, since that would be the spacing 

between adjacent 0.156 nm gaps.) All of the Pd+ terminations cleave the bulk at smaller gaps 

of 0.078 nm. In quasicrystals, it has been proposed that the spacing between adjacent planes 

influences the selection of terminations.13, 31 This reflects the fact that a large interplanar gap 

implies weaker bonding between planes, and hence a lower total surface energy for the two 

adjacent planes. This correlation between interplanar spacing and surface energy suggests 

that the Pd- set should be the preferred type of termination. 
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C. Chemical Composition 

Table III shows that in the Pd- set, the top plane is mainly or completely Al. It may 

contain some Mn, but never Pd. In the Pd+ set, the top plane always contains Pd (on average 

in excess of 40 atomic %), typically being a mixture of Al, Pd, and Mn. This general 

description applies to all 4 models. Papadopolos et al.29 have proposed that the Pd+ set are 

terminations on 5-fold surfaces of i-Al–Pd–Mn (although we wish to note that Papadopolos 

et al. have expressed reservations about the chemical decoration used.51, 52) On the other 

hand, a termination similar to those in the Pd- family has been used in density functional 

simulations of surface properties of Al–Pd–Mn rational approximants. 35, 53-55. In addition, a 

termination belonging to the Pd- family was used for generating potential energy surfaces 

and subsequent Kinetic Monte Carlo simulations of Al adatoms.56, 57 

The models can be compared with experimental data for both Pd and Mn content. 

Regarding Pd content, LEED I-V data for 5-fold i-Al–Pd–Mn were fit best by terminations 

that contained an average of 93 at% Al, 7 at% Mn, and no Pd in the top plane, within the 

context of the modified Boudard model. In other words, there was a clear preference for the 

Pd- set over the Pd+ set. An analogous result was obtained for the 5-fold surface of i-Al–Cu–

Fe, i.e. no Fe was found in the topmost plane.25 LEIS also indicated that the top plane is Al-

rich, whereas the second plane is relatively rich in Pd.41 Other types of surface sensitive 

analyses—X-ray photoelectron spectroscopy or Auger electron spectroscopy—have provided 

information that is not useful in the present context since these techniques average over many 

layers and therefore give bulk compositions. Overall, the LEED I-V data and the LEIS data 

indicate that the majority of surface planes belong to the Pd- set.  
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Regarding Mn content in the top plane, there are two reports based on low-energy ion 

scattering data. The first indicated a range of 0.4 to 6.3 at% Mn, while the second, more 

sophisticated study indicated an upper limit of 1 at%. The LEED I-V analysis set an upper 

limit of 10 at%. An STM study reported a mean surface Mn concentration of about 0.2 nm-2, 

assuming that every adsorbed Si atom occupied a Mn site.58 This translates into a top-layer 

Mn concentration of 2.5-3.3 at%, using the average densities of the top planes in either the 

Pd- or Pd+ sets (cf. Table II). Taken together, the data indicate that the average Mn 

concentration in the topmost plane is between 0 at% and 10 at%, and most probably < 4 at%.  

Table III contains the information needed to predict Mn content from the 4 models, 

for both the Pd- and Pd+ terminations. It can be seen that the range of average Mn content in 

the top plane, across the different models, is about the same for the two families:  from 0 to 

15% in the Pd- set, and 0 to 19% in the Pd+ set. These ranges certainly encompass all of the 

experimental values. Hence, Mn content cannot be used to discriminate between the two 

main families.  

 

D. Cut Clusters 

Much past discussion of surface structure has revolved around the local structure, 

which in turn relates to clusters that can be identified in the bulk.1-3 These clusters are nested 

polyhedra consisting of a few tens of atoms. In the deterministic models, two types of 

clusters are commonly identified, called Bergman and Mackay. In icosahedral materials, any 

plane through the bulk intersects some of these clusters. Cut clusters have been associated 

with certain local features in STM images of the 5-fold surfaces, the so-called dark stars, 

which are important adsorption sites.5, 56, 57, 59-61  
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The two main families differ in the way that the top planes cut bulk clusters in the 

models. The Pd- family cuts Mackay clusters 0.252 nm above or 0.204 nm below the 

equator, thereby producing features that are strong candidates for the dark star sites. The Pd+ 

family cuts Bergman clusters 0.078 nm below the equator, producing a competing candidate 

for the dark star sites. From our assertion that the Pd- family is more likely to be the 

preferred termination, it follows that the dark star sites are more likely to be cut Mackay 

clusters than cut Bergmans.  

 

IV. A Third Family 

A third type of termination can be described as a group of three planes, separated by 

two gaps of 0.05 nm. The middle plane is denser than the two outer ones. We call these 

groups “triplets.” One such group is enclosed by a light rectangle in Fig. 2. Most triplets 

contain a pair of planes that is comparable in density to the pairs in the two main families.  

The triplets cannot account for all of the surface terminations, because the 

experimental M step height is 0.408 nm, while the separation between triplets is at least 

0.864 nm, using the dense middle plane of each triplet to define its location. However, it is 

possible that the triplets coexist with other terminations. Indeed, two LEED I-V studies22, 23, 

25 and one XPD study40 showed previously that the ensemble of surface terminations contains 

10-30% triplets. For examples, see the terminations labeled B and E in Fig. 4 of Ref. 40, or 

the fifth arrow from left in Fig. 9 of Ref. 25.  

Each of the less dense planes at the edge of a triplet, 0.05 nm from the middle plane, 

is formed by a projection from the periphery of one of the two main atomic surfaces in 6D. 

(See Sec. II.) We note that there is no fundamental difference between the dense paired 
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planes in the Pd+ and Pd- families, and the planes in the triplets, with respect to the 6D 

representation. The distinction between triplets and the other two families appears in 3D 

when we impose the simplifying constraint that planes with very low atomic density ( < 1 

nm-2) are unimportant. 

 

V. Surface Equilibration 

The degree to which triplets, or even mixtures of Pd+ and Pd- terminations, are 

present on a real surface probably depends upon conditions of preparation. In all of the data 

reviewed in this paper, surfaces were prepared by ion bombardment at room temperature, 

followed by annealing. After the initial structural and chemical disruption caused by ion 

bombardment, the surface must regenerate, with the bulk sample serving as both template 

and reservoir. During re-growth, metastable phases and features can appear and disappear. 

For instance, a cubic phase forms at moderate annealing temperatures, and is replaced by the 

quasicrystalline phase around 700 K.62  

In one study it was found that if the quasicrystalline surface phase is annealed no 

higher than 915 K, it includes metastable terminations.63 The signature of these transitory 

terminations is a dense network of voids, through which the more stable termination at the 

bottom of the voids becomes progressively exposed with increasing annealing temperature.45, 

63, 64 On i-Al–Pd–Mn, the voids have a depth of 0.25 nm.63 This value can be reconciled with 

transitions between terminations in different families. These arguments will be presented 

elsewhere. The main point here is that the voids provide evidence that terminations from 

different families coexist, at least under some circumstances. Further evidence for coexisting 

families can be inferred from an XPD study40 in which the surface was heated to a relatively 
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low temperature, 800 K. Under these conditions, equal contributions from Pd+ and Pd- 

families were found, together with triplets. It is possible that the Pd+ set is metastable at such 

low preparation temperatures.  

 

VI. A Non-Deterministic Model 

Some characteristics of the Yamamoto model, a non-deterministic model, are 

included in Tables I-III. In calculating average densities and compositions for this model, we 

weighted each atomic position according to its statistical occupancy and composition. The 

bulk atomic density is 61.6 nm-3. This is low compared with the densities of the other 

models, which fall in the range 65.4-66.6 nm-3. The lowness of the value may be related to 

the partial occupation of sites. 

 The densities and compositions of atomic planes are shown in Fig. 4 for the 

Yamamoto model. There are many atomic planes, but gaps exist between groups of planes. 

The clustering of planes suggests a natural grouping as shown by the brackets at the bottom 

of the x-axis in Fig. 4. Each bracket is 0.11 nm wide. We call each such group of planes a 

“layer,” by analogy with the deterministic models, even though they do not consist of simple 

paired planes. The layers can be divided into two families of plausible terminations that are 

very similar to the Pd+ and Pd- families discussed in Sec. III.  

One difference between this model and the deterministic models, is that a layer in the 

Yamamoto model cannot be divided into two planes separated by 0.050 nm, so the 

composition of a layer is more spatially continuous. Nonetheless, the compositional trends 

are the same: There is a Pd- family, in which the Pd concentration increases from top to 

bottom, and vice-versa in the Pd+ family. Another difference between this model and the 
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deterministic models, is that the atomic density of the terminating layers is only 12.5 nm-2 on 

average, to be compared with 13.6 nm-2 in the deterministic models. This mimics the 

difference in bulk density noted above, and undoubtedly has the same origin.  

Triplets can also be identified in the Yamamoto model, and one example is shown by 

the gray rectangle in Fig. 4.  

 

VII. Correlations between Characteristics of Terminations, and Heights of Adjoining 

Steps 

It has been reported that different terraces can behave much differently as templates 

for nucleation and growth of metal films.65, 66 It has also been reported that terrace width is 

smaller if the terrace is bounded by an M-type step than an L-type step.67 Furthermore, step 

bunching on these 5-fold surfaces has been attributed to differences between different 

terminations.31 Because of such observations, there has been speculation that step heights on 

quasicrystals, such as L and M, may correspond to certain densities, compositions, or other 

features on the adjoining terraces.67 Our analysis of the models shows that such correlations 

indeed exist.  

To assess correlations in atomic structure, we chose to evaluate the density of the top 

plane in the terminating layer. This metric can be applied to the four deterministic models, 

but not to the Yamamoto model because in the latter, terminating layers do not consist of 

only two planes. Table IV shows the result: The density of the topmost plane, for terraces 

bordered by L-steps, is about 80% lower than the other type of terrace. This is true for the 

Pd- family. Because of the complementary relationship between the two families, the inverse 

relationship would hold in the Pd+ family: Top planes of terraces bordered by M-steps would 
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be about 80% less dense than the other. Table IV shows that the results are nearly identical 

for the four models, which should be expected since they are so similar in terms of the 6D 

structure (Sec. II). We do not expect that the Yamamoto model would be significantly 

different if an analogous metric were devised. 

To assess correlations in composition, we evaluate the average Al, Pd, and Mn 

concentrations in the terminating layer. The result is shown in Table IV. Again, there is 

always a difference between L- and M-type terraces, but now the difference depends strongly 

on the model. Taking Mn concentration in the Pd- set as an example, terminating layers on L-

type terraces contain more Mn than M-type terraces in the KG and Boudard models. The L-

type terraces contain less Mn in the other three models. The average Mn concentration on the 

two types of terraces differs by as much as a factor of 10 (e.g. KG model). 

These results show that there is both a structural and chemical correlation between 

step height and characteristics of the terminations. The correlation is model-independent for 

atomic densities of the topmost plane, where the relationship L < M always holds true. 

However, it is strongly model-dependent for the composition in the terminating pair of planes 

(layer). Either or both of these correlations could be related to the experimental observations 

mentioned above. Finally, it should be noted that the correlations apply only to average 

quantities. The distributions sometimes overlap, as can be seen by inspecting the ranges 

given in Table IV.  

 

VIII. Discussion 

In the two main families, we hypothesize that the Pd- set is the more stable type of 

termination. This is partly because of the larger interplanar gap where the surface is formed, 
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which signals a lower surface energy. It is also because experimental data indicates that the 

top plane contains no Pd in i-Al–Pd–Mn, and (analogously) no Fe in i-Al–Cu–Fe. 

Furthermore, LEIS indicates that the top plane is Al-rich, while the second plane is relatively 

Pd-rich. The Pd+ family always contains significant Pd in the topmost plane. Our hypothesis 

has implications for atomic-scale structure on surfaces, because it implies that the dark-star 

features in STM are cut Mackays rather than cut Bergmans as had been previously proposed 

by Papadopolos et al.29 

If one accepts the hypothesis that the Pd- set is the more stable type of termination, 

can surface science distinguish between the bulk structural models? On the basis of long-

range, average information (i.e. information averaged over many terraces) of the type that has 

been emphasized in this paper, we conclude that it cannot. However, future research may 

provide such a result by taking advantage of the fact that the structural models differ, not so 

much in their atomic locations as in their chemical decorations. Specifically, an experiment 

could be designed to determine the correlation between the chemical composition of 

individual terraces, and the adjoining step heights. Our analysis (Section VII) reveals that this 

correlation is quite model-dependent. This approach would differ from experiments designed 

to date, in that it would provide chemical compositions on individual terraces, as opposed to 

compositions that are averaged over many terraces.  

 

IX. Conclusions 

We have examined 4 deterministic models and 1 non-deterministic model for i-Al–

Pd–Mn in terms of the densities, interplanar spacings, and compositions of the 5-fold planes 

which are viable surface terminations, and we have compared them with available data for 5-
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fold surfaces. Each of the 4 deterministic models contains sets of paired planes (layers), and 

the non-deterministic model contains similar groups of planes. Two main families of layers, 

which we call Pd- and Pd+, are viable terminations based upon their planar structure and the 

step heights associated with them. Each layer can belong to either family, depending only 

upon viewing direction. Besides Pd content, these two sets differ in the average relative 

densities of the two planes (Pd- having the denser plane on top, usually) and the width of the 

interplanar gap where the surface forms (Pd- having the larger gap by a factor of 2). The 

experimental data and other arguments lead to the conclusion that the Pd- family is favored 

over the Pd+. This implies that a distinctive type of adsorption site, known from STM studies 

as a dark star, is a cut Mackay cluster. There is evidence that a third family, consisting of 

triplets, is also present as a minority. Finally, analysis of the models shows correlations 

between average structure and composition of terminations, and the height of the step 

adjoining the terrace.  
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Table and Figure Captions 

Figure 1. (Color online) Semi-three-dimensional STM image of the 5-fold surface of 

icosahedral Al-Pd-Mn. Size of the image is 250nmx250nm; the tunneling 

conditions are +0.97V, 0.47nA. 

Figure 2. Schematic depiction of atomic planes in the KG model. The x-axis is the 5-fold 

axis. The spatial coordinate is labeled  “(x)” because this is the notation used by the 

authors of the model. The height of each line is proportional to the planar atomic 

density. Within each vertical bar, black is Al, gray is Pd, and white is Mn. The light 

rectangle encloses a triplet.  

 

Figure 3. Atomic arrangements in two adjacent, dense, 5-fold planes in the KG model. The 

two planes combined would be one layer. The sizes of the figures are 6nmx6nm (a) 

Pure Al, x=8.58 nm. This would be a top plane in the Pd- family. (b) A mixture of 

Al, Pd and Mn, x=8.53 nm. This would be a top plane in the Pd+ family. Circle is 

Al, square is Pd and triangle is Mn. 

 

Figure 4. (color online) Schematic depiction of atomic planes in the Yamamoto model. The z-

axis is the 5-fold axis. The spatial coordinate is labeled “(z)” because this is the 

notation used by the authors of the model. The height of each line is proportional to 

the planar atomic density. Planes are color–coded for chemical composition, where 

black is Al, green is Pd, and red is Mn. There are very many planes, but gaps 

between groups of planes suggest the natural grouping scheme indicated by the 
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series of 0.11 nm-wide brackets at the bottom. The light rectangle encloses the 

equivalent of a triplet.  

Table I. Information about the bulk structure models of the quasicrystal, i-Al–Pd–Mn, used in  

 this paper. In calculating total number of atoms in the Yamamoto model, sites are    

 weighted according to occupancy. In the four deterministic models, a layer is a pair  

 of planes. In the Yamamoto model, a layer is a group of planes as defined in Sec. VI  

 and Fig. 4.  

Table II. Densities of planes and layers in the Pd- and Pd+ types of terminations. Densities  

  are in units of atoms nm–2. For information about individual planes, see supple- 

  mental materials.37 In the four deterministic models, a layer is a pair of planes. In the  

  Yamamoto model, a layer is a group of planes as defined in Sec. VI and Fig. 4.  

Table III. Compositions of planes and layers in the Pd- and Pd+ types of terminations, in  

  units of atomic percent. Ranges and averages are given here. For information about  

  individual planes, see supplemental materials.37 In the four deterministic models, a    

  layer is a pair of planes. In the Yamamoto model, a layer is a group of planes as   

  defined in Sec. VI and Fig. 4.  

Table IV. Correlations between densities and compositions of terminations, and step heights,  

   in the Pd- family. Heights of L- and M-type steps are 0.660 nm and 0.408 nm,  

   respectively, for the 5-fold surface of i-Al–Pd–Mn. In the four deterministic    

   models, a layer is a pair of planes. In the Yamamoto model, a layer is a group of   

   planes as defined in Sec. VI and Fig. 4. 



 

 
 
 
 
 
 
 
 

Table I 
 

Model Composition Size of the region analyzed 
 

Al Pd Mn Total number of 
atoms Volume (nm3) 

Total number of layer 
identified as viable 
terminations in the 

analyzed space 
KG 70.2 21.3 8.5 29,938 4.5 x 102 26 

Boudard 68.7 21.9 9.5 293,061 4.4 x 103 36 
PK 72.6 20.8 6.6 65,439 1.0 x 103 35 
QG 70.4 21.3 8.3 375,825 5.6 x 103 66 

Yamamoto 73.0 18.8 8.2 123,204 2.0 x 103 18 
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Table II 
 

Model 

Range of 
densities of 
first (top) 

plane in Pd- 
or second 

plane in Pd+ 

Average 
density of first 

plane in Pd- 
or second 

plane in Pd+ 

Range of 
densities of 

second plane 
in Pd- or first 
plane in Pd+ 

Average 
density of 

second plane 
in Pd- or first 
plane in Pd+ 

Range of 
lateral 

densities of 
terminating 

layer 

Average 
density of 

terminating 
layer 

KG 4.60 to 9.12 7.52 4.25 to 8.91 6.48 13.51 to 14.30 13.92 

Boudard 4.63 to 8.85 7.57 4.27 to 8.58 5.95 13.07 to 13.71 13.53 

PK 4.67 to 8.96 7.61 4.48 to 8.80 6.21 13.31 to 14.15 13.82 

QG 4.59 to 8.95 7.56 4.34 to 8.72 6.02 13.16 to 13.89 13.59 

Yamamoto n/a n/a n/a n/a 11.44 to 13.54 12.45 
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Table III 
 

Model 

Range of 
compositions of 
first (top) plane 
in Pd- or second 

plane in Pd+ 

Average 
composition 
of first plane 

in Pd- or 
second plane 

in Pd+ 

Range of  
compositions of 
second plane in 

Pd- or first 
plane in Pd+ 

Average 
composition 

of second 
plane in Pd- 
or first plane 

in Pd+ 

Range of  
compositions of 
terminating layer 

Average 
composition 

of 
terminating 

layer 

 
KG 

 
Al(100.00) Al(100.00) 

Al(23.84-50.60) 
Pd(18.86-69.58) 
Mn(0.59-36.93) 

Al(36.20) 
Pd(44.56) 
Mn(19.24) 

Al(56.49-83.40) 
Pd(9.91-26.12) 
Mn(0.20-19.74) 

Al(70.58) 
Pd(19.38) 
Mn(10.04) 

 
Boudard 

 

Al(87.10-100.00) 
Mn(0.00-12.90) 

Al(95.41) 
Mn(3.59) 

Al(26.40-78.20) 
Pd(21.80-66.83) 
Mn(0.00-26.25) 

Al(38.52) 
Pd(49.20) 
Mn(12.18) 

Al(57.58-84.22) 
Pd(7.05-25.55) 
Mn(2.50-17.04) 

Al(69.86) 
Pd(21.39) 79Mn(8.76) 

 
PK 

 

Al(82.88-100.00) 
Mn(0.00-17.12) 

Al(95.04) 
Mn(4.96) 

Al(26.11-87.79) 
Pd(12.21-72.62) 
Mn(0.00-14.62) 

Al(51.77) 
Pd(43.99) 
Mn(4.24) 

Al(64.56-87.09) 
Pd(4.16-31.37) 
Mn(0.00-11.29) 

Al(74.67) 
Pd(19.97) 
Mn(5.36) 

 
QG 

 

Al(69.35-100.00) 
Mn(0.00-30.88) 

Al(84.83) 
Mn(15.17) 

Al(34.95-82.67) 
Pd(17.33-65.05) 

Mn(0.00) 

Al(58.38) 
Pd(41.62) 
Mn(0.00) 

Al(62.12-78.17) 
Pd(5.69-36.00) 
Mn(0.00-19.71) 

Al(71.06) 
Pd(19.48) 
Mn(9.46) 

Yamamoto n/a n/a n/a n/a 
Al(72.56–89.75) 
Pd(2.69–23.37) 
Mn(2.46–8.86) 

Al(79.14) 
Pd(14.52) 
Mn(6.34) 

 
 
 
 
 

 



 

 
 
 

Table IV 
 

 Average concentration of elements in terminating layer, at%  
(Range of values for individual terminating layers is given in 

parentheses.) Model 

Type of step 
bordering 

termination 
in down-

going 
direction 

Average 
atomic 

density in 
top plane of 
termination, 

nm–2 

Average 
atomic 

density in 
top plane, 
L:M ratio. Al Pd 

 
 

 Mn 
 
  L 6.6 66.39 (56.49–75.38) 18.13 (9.91–25.74) 15.57  (3.15–19.74) 

KG 
 M 8.9 

0.74 
76.71 (71.32–83.40) 21.56 (16.40–26.12) 

 
1.73 (0.20–2.92)  

  L 6.8 65.08 (57.58–72.27) 24.32 (23.18–25.25) 10.59 (3.04–17.04) 
 Boudard 

 M 8.8 
0.78 

76.85 (72.69–83.34) 17.52 (8.05–24.08) 5.62  (2.50–8.60) 

80 
  L 6.9 70.61 (64.56–81.24) 24.54 (12.92–31.13) 4.94  (1.11–9.33) 
 PK 

 M 8.8 
0.78 

81.57 (79.62–84.55) 11.67 (4.16–15.25)  6.76  (5.13–11.29) 

  L 6.8 69.83 (62.12–75.90) 25.87 (8.98–36.00) 4.29  (0.00–15.18) 
 QG 

 M 8.8 
0.78 

72.68 (67.29–78.17) 8.98 (6.04–13.67)  18.06  (15.45–19.71) 
 

L n/a 76.70 (72.56–86.34) 17.74 (5.85–23.37) 5.56  (2.46–8.86)  
Yamamoto 

M n/a 
n/a 

84.03 (77.77–89.75) 8.08 (2.69–13.81)  7.89  (7.15–8.65) 
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ADSORPTION SITES ON QUASICRYSTAL SURFACES: DARK STARS AND 

WHITE FLOWERS 

 

A paper will be submitted to Journal of Physics: Condensed Matter 

 

Baris Unal, C.J. Jenks, and P.A. Thiel 

 
Abstract. 

From other work, two preferred sites have been suggested for metals and semimetals 

adsorbed on the five-fold surfaces of icosahedral, Al-based quasicrystals. Because of their 

appearance in scanning tunneling microscopy (STM) images, these sites are known as dark 

stars and white flowers. In this paper, we analyze (mainly) four bulk structural models in 

physical space to determine the types, densities and chemical decorations of these two 

adsorption sites for the fivefold planes. We determine not only how these characteristics vary 

from model to model, but also from terrace to terrace within a single model, and even from 

site to site within a single terrace of a single model. We draw four main conclusions: (1) The 

chemical decorations of dark stars and white flowers vary from from model to model and 

also from site to site; (2) In all models, there exist correlations between the heights of steps 

and densities/types of adsorption sites on adjoining terraces; (3) The pentagonal hollow sites 

known as dark stars are formed by dissected Mackay clusters, not cut Bergman clusters as 

previously suggested; and (4) In all models, on a subset of terraces, cut Mackays and cut 

Bergmans co-exist.  
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1. Introduction  

The surface adsorption site of a molecule or an atom is one of the most basic pieces 

of information that is needed to understand chemisorption.   However, extracting this simple 

piece of information poses special challenges when studying chemisorption on a certain type 

of intermetallic alloy known as a quasicrystal.  These challenges ultimately derive from the 

fact that quasicrystals are well-ordered, but are not periodic. A direct consequence for surface 

science is that quasicrystals naturally present a variety of different types of adsorption sites, 

where a site is defined as a local minimum in the potential energy surface. A good illustration 

of the variety expected for a quasicrystal is shown in Fig. 2 of Ref.[1], which is a potential 

energy surface calculated for an Al adatom on 5-fold i-Al-Cu-Fe. The range of adsorption 

sites is due to the range of local atomic configurations that can be identified.  

A particular type of quasicrystal—the icosahedral (i-), Al-based alloys—has received 

much attention from surface scientists, because materials in this class are available as large 

single-grain samples, because they are tractable in ultrahigh vacuum (UHV), and because 

they represent a large fraction of known quasicrystals. This paper focuses primarily upon i-

Al-Pd-Mn, although some mention is made of two alloys believed to be isostructural, i-Al-

Cu-Ru and i-Al-Cu-Fe. The 5-fold surfaces of these alloys are believed to be bulk-

terminated, except for interplanar relaxation [2-8]. 

Experimental work has shown that, depending upon the adsorbate, two particular 

adsorption sites are preferred[9]. For Al, Ag, Sn and C60 adsorbates[9-14], the preferred site 

is imaged as a dark star in scanning tunneling microscopy (STM) of the clean 5-fold surfaces 

of i-Al-Pd-Mn and i-Al-Cu-Fe[10, 11]. In nucleation and growth of Ag films, this site acts as 

a ‘trap’ site, skewing the nucleation kinetics so that they resemble heterogeneous 



   87

nucleation[13, 15].  For Bi adsorbate[9], the preferred site is imaged as a white flower in 

STM of the same surfaces. While the nucleation kinetics have not been studied in the latter 

systems, one expects a trapping effect to be exhibited by the white flowers as well.  

In this paper, we explore the possible chemical nature of the dark star site and, to a 

lesser extent, of the white flower site. The spectrum of possibilities for these sites is much 

more complex than in a normal crystal, because of factors that will be discussed in Section 2. 

In short, the complicating factors include the existence of different models for the bulk 

structure; the existence of different possible families of terminations within any given model; 

and the possibility of sites that are structurally identical but chemically different, even within 

a single family of a single model. This work builds upon a previous report, in which we 

analyzed the variation in the long-range, average structure and composition of surface 

terminations for different models of the bulk structure and for different families of 

terminations[16]. The present work is different because it focuses on the chemical 

composition of a very local feature—the adsorption site—instead of the long-range average 

composition.  

Some other publications have analyzed aspects of dark star and white flower sites (and 

other motifs), but there has been no comprehensive comparison among different models, nor 

among different types of terminations, such as that presented here. Thus, while this paper 

overlaps somewhat with published work by other authors, it presents many new pieces of 

information—both from experiment and from analysis of the models—that serve to build a 

more comprehensive and useful picture. For instance, by pointing out the variability in 

chemical decoration of dark star sites among different models, one can comment on the 

robustness of published DFT analyses of adsorption on approximants.  



   88

This paper also analyzes the spectrum of densities of the dark star sites. We find that 

the density should correlate with the height of the step that adjoins the terrace, which fits well 

with certain experimental observations. These have shown that different quasicrystal terraces 

can behave differently in adsorption. Finally, we present new experimental data that support 

the existence of different types of dark star sites on real terraces. 

 

2.  Background 

2.1. Families of terminations. 

Bulk structure models of quasicrystals are often called “deterministic” if they contain 

no sites of partial or mixed occupancy. In this paper, we focus on four deterministic bulk 

structure models, and make some brief comments about one non-deterministic model. These 

five models are chosen because their authors have made available large three-dimensional 

volumes containing atomic coordinates. We refer to them as the Boudard model, the Katz-

Gratias (K-G) model, the Quiquandon-Gratias (Q-G) model, and the Papadopolos-Kasner (P-

K) model. Details of our approach have been given previously[16]. 

It is known that surfaces of quasicrystals can be prepared in a terrace-step structure, 

in which the terraces are essentially flat[7, 17-21]. Therefore, it useful to break down the bulk 

models into atomic planes, for purposes of comparison with surfaces. Fig. 1 shows an 

example of the density and composition of planes of atoms, versus their location along the 5-

fold axis in one of the deterministic models (P-K). If we ignore the low-density planes (lower 

than about 1 atom/nm2), the four deterministic models are virtually identical when 

represented in the style of Fig. 1[16]. This is not surprising; it has been said that about 85% 
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of the atomic sites overlap in these models, a fact which derives from certain common 

features in their six-dimensional structure[16, 22]. 

Several experiments have shown that the preferred terminations of 5-fold surfaces of 

i-Al–Pd–Mn and i-Al–Cu–Fe consist of two dense planes that are closely spaced. The 

spacing between the planes at the surface is about 0.04 nm, a contraction of 20% from the 

bulk value of 0.05 nm[2-5]. We shall call such a pair of planes a layer. Furthermore, 

experiments show that terraces are separated by steps of various heights, where the heights 

are related by the golden mean, τ = (1+ 5 )/2 ~ 1.618…[7, 17-21, 23] 

Matching these two features to the models, we identified two main families of layers 

as viable terminations. Some are labeled at the bottom of Fig. 1 with brackets. In one family, 

the top plane contains Pd, and in the other it does not. Hence, we call them Pd- (without Pd) 

and Pd+ (with Pd). Besides Pd content, these two families differ in the average relative 

densities of the two planes (Pd- having the denser plane on top, usually) and the width of the 

interplanar gap where the surface forms (Pd- having the larger gap by a factor of 2). A third 

family is also present but as a minority. Based upon comparison with experimental data, and 

upon the widths of the gaps in the models, we concluded that the Pd- family is most likely to 

be the real type of termination.  

 

2.2. Clusters in the bulk models 

The analysis of the dark star and white flower sites is typically couched in terms of 

clusters that can be identified in the bulk solid. When a surface plane intersects a cluster, the 

cluster is truncated (cut). In the bulk, the clusters contain a few tens of atoms arranged in 
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concentric shells. In the deterministic models, the two main types of clusters are called 

Mackay and Bergman.  

The Bergman cluster is a 2-shell cluster. The central site can be filled with a single 

atom, or empty. The inner shell is an icosahedron (12 vertices), and the outer is a 

dodecahedron (20 vertices) with diameter 0.83 nm. If all sites are filled and the structure is 

geometrically ideal, the number of atoms in a Bergman cluster is 33.  

The Mackay cluster has 3 shells and 50 atoms on average, including a central atom. 

In this cluster, the inner polyhedron is an incomplete dodecahedron, sometimes termed a 

disordered dodecahedron because the number and positions of atoms vary from cluster to 

cluster. This incomplete dodecahedron is enclosed by 2 interpenetrating polyhedra containing 

(ideally) 42 atoms: a complete icosahedron (12 vertices), plus a complete icosidodecahedron 

(30 vertices). The diameters of the last two shells are both 0.96 nm. [Note that here we are 

defining the terms “Bergman cluster” and “Mackay cluster” in a way that is consistent with 

current discussions of quasicrystals. In the original definitions given by Bergman et al.[24] 

and by Mackay[25], both clusters had more, larger shells. The clusters discussed in this paper 

are thus geometrical subsets of the original clusters.]  

In Al-Pd-Mn quasicrystals, Mackay and Bergman clusters are not independent. 

Rather, they are complementary because they often overlap. The overlap is illustrated, for 

instance, by Fig. 10 of Ref [26]. Because of overlap, the clusters are almost space-filling. In 

the Q-G model, for example, they fill 98% of the volume of the solid[27]. The 

interpenetration of these clusters leads to variations in structural and chemical order within a 

given type of cluster.  
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Many clusters are imperfect. They can deviate from ideality due to missing atoms, 

extra atoms, and/or distortion. In this vein, an extensive analysis of Mackay clusters in the 

Boudard model has shown that at least 22% of the Mackay clusters lack one or more atom in 

the outer two shells[28]. Further insight into structural variation has been provided by 

analyses of the K-G and Q-G models[26, 27], showing that the number of atoms in Bergman 

clusters ranges from 32 to 35, with numbers in excess of 33 indicating distortion.  In this 

paper, surface features are described as cut Bergman (cB) or cut Mackay (cM) clusters if the 

number and arrangement of atoms in the first surface layer (i.e. in the first pair of planes) 

matches expectation for a truncated cluster of that type, regardless of whether the remainder 

of the cluster is perfect. We believe that this definition of a cut cluster is good for comparison 

with experimental STM data. However, it may be different than that which has been adopted 

by other authors, for instance Papadopolos et al.[29], in their analyses of densities of cBs in 

surface terminations.  

Chemical variations are also common in the bulk, both from cluster to cluster and 

from model to model. For instance, consider the Mackay clusters. The central atom can be 

either Al or Mn in the Boudard and K-G models. It can be either Al or Pd in the Q-G model. 

The icosahedron (one of the two outer shells) can contain Al, Mn, and/or Pd in the Boudard 

model, but it is either pure Pd or pure Mn in the Q-G model. The distorted dodecahedron (the 

innermost shell of the Mackay) is always pure Al in perfect clusters, but it can contain other 

kinds of atoms in imperfect clusters.  

The clusters in the Yamamoto model are larger than those of the other models. For 

example, there are two main clusters with 2.0 nm diameter. These clusters have 12 and 11 

concentric shells, respectively (see Figs. 10 and 11 in ref [30]). In the 12-shell clusters, there 
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are no central atoms, but 11-shell clusters have a central atom, which can be Al or Mn. 

Although these clusters are larger than those in the deterministic models, in both of these 

clusters, the first two inner shells form so-called Bergman clusters. Therefore, here, we only 

mention their first few shells. In 12-shell clusters, the vertices of the first inner icosahedron 

are decorated by Pd and/or Mn and the vertices of the dodecahedron are decorated by Al 

and/or Mn. However, in 11 shell clusters, the chemical decorations of the first inner two 

shells are reversed. 

In the Yamamoto model, there are also two types of 3-shell Mackay clusters (see Fig. 

12 in ref[30]).  The first has a fully occupied icosahedron as the inner shell while the second 

one has a partially occupied dodecahedron. The chemical decorations of both clusters can 

vary. 

 In summary, the clusters in the Yamamoto model are similar to those in the 

deterministic models, if one considers only the inner shells.  

 

3.  Results and discussion 

3.1. Experimental Surface Data 

A high resolution STM image of the 5-fold surface of i-Al-Pd-Mn is shown in Fig. 3. 

There, examples of dark stars and white flowers are marked, as well as two other motifs 

known as white stars and rings. Previously, other groups also observed these local atomic 

configurations with STM[17, 18, 20, 29, 31, 32]. Among all of the local structures, dark stars 

and white flowers are the most abundant motifs. The following observations can be made 

about these two features: 
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(a) All dark stars in Fig. 3a have the same size and shape, but a close inspection reveals 

that there are three types of local environments in the STM image. Each dark star is 

surrounded by 3, 4, or 5 complete pentagons. Based on this, we classify the dark stars 

as A, B and C-type, respectively. These types are marked in the STM image of Fig. 

3a, and are also drawn schematically in Fig. 3b. Whenever a pentagon is missing 

between two arms of a dark star, a single protrusion stands in its place.  

(b) The depth of the dark stars varies within the same terrace. This is illustrated by the 

line profiles in Fig. 4, which cut across three dark star sites. One is significantly 

deeper than the other two.  

(c) The orientation of the dark stars is the same within a single terrace as shown in Fig. 

3a and also the same across different terraces. (This is not shown here, but see Fig. 3 

in Ref.[33] and Fig. 4 in Ref.[32]) 

(d) The density of dark stars changes from terrace to terrace. (This is not shown here, but 

see Fig. 3 in Ref.[33], Fig. 4 in Ref.[32], or Fig. 2 in Ref.[34] for examples.) 

(e) As shown by comparing Fig. 4a with 4b, there is some dependence upon whether the 

image is raw or filtered. The apparent density of dark stars increases with fast Fourier 

transformation (FFT) filtering, because filtering converts some poorly-imaged 

features into dark stars. Examples are encircled in Fig. 4. On the other hand, the 

conclusion that dark stars have different depths is not affected by filtering. Also, once 

a dark star has been identified, its classification as A, B, or C-type does not depend 

upon filtering.  
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(f) An ideal white flower is formed by five small pentagons centered on a single small 

protrusion, but most of the white flowers are not perfect. This is because, in a typical 

white flower, one or more of the pentagons appear incomplete as shown in Fig. 3a.  

 

3.2. Surface Structure from the Bulk Models. 

3.2.1. Positions of atoms.  

Previously, Papadopolos et al. carried out an extensive analysis, showing that the 

basic motifs seen with STM—dark star, white flower, white star, ring—can be identified in 

the Pd+ family of terminations within the P-K model. Most notably, the dark star site was 

identified as a cB (see below). For the same family of terminations, we have examined all 

four deterministic models and have found that the same local features can be found in all 

models, which is not surprising because of the overlap in atomic positions between models 

(cf. Section 2.1). However, as noted in Sec. 2.1, this family of terminations is less likely than 

the Pd- family.   

The same basic motifs can also be identified in the Pd- family of terminations. Fig. 5 

shows atomic positions within the top two planes of a Pd- termination from the P-K model. 

Each circle represents an atom, irrespective of the type of element. As marked in Fig. 5, a 

hollow site surrounded by small pentagons is a reasonable candidate for a dark star, and five 

small pentagons centered on a single atom in the top plane is a good match to a white flower. 

A small pentagon surrounded by five atoms occupying the vertices of a larger pentagon can 

be a white star. Ten small pentagons centered on a small pentagon can be a ring motif. 

Previously, Krajci et al.[35], also showed that 2 of these 4 local features—dark star 

and white flower—could be identified in the Pd- family in a 3/2-type approximant.  
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Focusing now on the pentagonal hollow motifs, Fig. 6a demonstrates that not all have 

the same local structural environment. They are surrounded by either 5, 4, or 3 complete 

pentagons, making them analogous to the A, B, and C-type dark stars observed 

experimentally (cf. Fig. 2). When a pentagon is absent, it is replaced by a single atom in the 

topmost plane, which corresponds well to the single protrusion present at these locations in 

STM. Thus, three types of pentagonal hollow sites exist in the models, and these may well be 

the three types of dark stars identified in experiment, based upon local environment.  

If a Mackay is cut 0.252 nm from the center atom, a pentagon of atoms with an edge 

length of 0.48 nm is produced, which gives the main geometry of the dark star[35, 36]. This 

top pentagon arises from atoms in the icosidodecahedral shell. In the plane immediately 

beneath is another pentagon of atoms, rotated by 36o, arising from the icosahedral shell. In 

STM, one would expect the vertices of the second pentagon to be aligned with the arms of 

the dark stars. A similar result can be obtained if a Mackay cluster is cut 0.204 nm below the 

center, except now the origins of atoms in the two pentagons are reversed. These, and other 

aspects of the dark star structure, are shown by the cross-sections in Fig. 6b. Note that these 

two cuts yield identical atomic configurations in the top layer, and would be 

indistinguishable with STM. 

Even though all the pentagonal hollows have the same orientation, both within a 

given termination and for different terminations, their density changes from termination to 

termination. This is consistent with STM observations[32-34].  The range and average of 

densities of each pentagonal hollow type, for each model, are summarized in Table 1. One 

sees that there is almost no variation among different models, because the atomic positions in 

the dense planes are so similar among the models. For completeness, Table 1 also gives the 
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range and average densities of pentagonal hollows arising from cB configurations, although 

we do not believe that these are the dark star sites.  

From experimental data, the density of dark star sites has been indirectly estimated at 

0.03 to 0.1 nm-2[13, 15]. This was based upon the density of adsorbed Ag islands that are 

plausibly ‘trapped’ at the dark star sites. These numbers represent averages over many 

terraces. The lower value, 0.03 , is in reasonable agreement with the average density of A-

type dark stars in Table 1 (0.038 nm-2), but the range of 0.03-0.1 nm-2 is incompatible with 

the total density of (A+B+C)-type dark stars, 0.26 nm-2. This suggests that not all dark stars 

are equally effective as nucleation sites for Ag islands.  

The densities of pentagonal hollows, for a set of individual Pd- terminations in the P-

K model, are given in Table 2. One sees here that the density of pentagonal hollows 

decreases as the density of atoms in the topmost plane increases; some terminations contain 

no hollows. This trend is also shown in Fig. 8. The rationale for this correlation involves the 

disordered dodecahedron.  

Atoms from the disordered dodecahedron (the inner shell) can occupy positions close 

to the center of a pentagonal hollow in either the top plane, or in the second plane. These two 

cases are shown in Fig. 6b and 6c, respectively. If atoms are in the top plane, they probably 

prevent cMs from being imaged as dark stars with STM. Therefore, we do not count such 

configurations as dark stars in our analyses. (In potential energy surface calculations, atoms 

in these positions cause the pentagonal hollows to have a banana-like appearance[1, 35-37]). 

The population of these atoms increases as the atomic density of the top plane increases, 

hence causing a decrease in dark star density.  
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Atoms from the disordered dodecahedron can also be in the second plane. For the A, 

B, and C-type dark stars there are 0, 1, and 2 such atoms, respectively. We speculate that the 

contribution of this inner shell may be the reason for the different depths of dark stars 

observed in the STM images.  

The type of dark star on a terrace also changes systematically with the step height. 

For example, in all models, only A-type dark stars exist on the terraces bordered by 

descending M type steps, as summarized in Table 3.  

Turning now to the white flower sites in the Pd- family of terminations, they can be 

formed in two ways. First, a surface plane can cut the Mackay cluster at its waist. The five 

leaves of the white flower belong to the five Bergman clusters surrounding it. Here, the atom 

at the center of the white flower is actually the center atom of the Mackay cluster. In the 

second way, Mackays are not cut at their equator positions, but white flowers could still be 

seen in the STM images, based on the configuration of atoms in the top layer only. The latter 

type of white flower is formed by a Mackay hanging down from the surface plane, with five 

surrounding truncated Bergman clusters. Here, the center atom belongs to the icosahedron of 

the Mackay, not its center. Analogous to the dark stars, these two cuts yield identical atomic 

configurations in the top layer, and would probably be indistinguishable with STM. 

Previously, the white flower has only been identified with one of these two configurations, 

the Mackays cut at the waist[35]. 

 

3.2.2. Identities of atoms. 

 In this analysis, we consider the dark star sites to be cMs. The chemical decorations 

of the dark stars, within the top two planes, are shown in Table 4. For two of the geometric 
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features, the chemical decorations are relatively invariant. The first is the pentagon of atoms 

in the top plane, with edge length of 0.48 nm. This is almost always entirely Al. The sole 

exception is the Q-G model, where one of the pentagonal vertices is occasionally occupied 

by Mn. Second, the second-plane atoms that arise from the inner dodecahedron are usually 

Al, but some C type dark stars have one or two Pd atoms in the second planes in both Q-G 

and K-G models.  

More chemical variation exists in the pentagon of atoms in the second plane, which is 

rotated by 36o with respect to the top one. This is qualitatively summarized in Table 4. For 

instance, in the Boudard model, the atoms at the vertices of the second-plane pentagon can be 

Mn, Pd, or a mixture of Mn and Pd.  In the Q-G model, they can be Al, Pd, or a mixture of Al 

and Pd. In the K-G and P-K models, the pentagons can consist of any of the three elements 

alone, and in addition some terminations have a mixture of Al, Pd and Mn at these sites. The 

chemical decoration of the second-plane pentagon varies considerably among models, among 

terminations within a given model, and among clusters within a given termination of a single 

model.  

The chemical identities of the white flowers are given in Table 5. Since there are not 

many white flowers whose leaves are complete, we focus on the chemical decoration of the 

main features of the white flowers such as the centers, the ten atom-ring  and the vertices of 

the pentagons in the second planes. In all models, the center atom is either Al or Mn, except 

for the K-G model where the center is always Al. We see another exception in the ten-atom 

rings in the white flowers of the Q-G model. When the center is occupied by Mn, the ring is 

decorated by either Al or Al+Mn, while in other models the positions are occupied by Al 

atoms only. We see significant chemical variations in the decoration of the second plane 
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pentagon. Especially, in the Boudard model, those sites are occupied by only Pd or both Al 

and Pd or in some terminations a mixture of Al, Pd and Mn. In all models, the vertices of the 

pentagons in the second plane are sometimes partially occupied, and on some terraces none 

of these positions are occupied. 

 We note that some sites have incomplete ten atom rings which may be seen in STM 

images as half-white flowers. In addition, their density compared to the full white flowers is 

low. Therefore, in this analysis, we exclude them.  

 

3.2.3. Coexistent cut Bergman and cut Mackay clusters.  

As described previously, if a termination cuts Mackay clusters at specific heights (i.e. 

0.252 nm above or 0.204 nm below the center), pentagonal hollows can be formed. The edge 

lengths of the pentagons are 0.48 nm. Pentagons with the same size but different orientations 

can be formed if a plane cuts a Bergman cluster 0.078 nm below its center.  In most of the 

Pd- terminations, pentagons originate exclusively from dissected Mackay clusters, according 

to our analysis of the models. However, about 30% of the terminations cut across both 

Bergman and Mackay clusters in such a way that both types of dissected clusters form 

pentagons as described above. Both types of pentagons are the same size in the top plane, but 

they are rotated by 36o, as illustrated in Fig. 7a. In the Pd- terminations, these cut Bergmans 

are always imperfect in the bulk. The main point is that the bulk structure models predict that 

for some terminations, both cut Bergmans and cut Mackays should be observable.  

Compare this prediction with the STM image shown in Fig. 7b for one particular 

terrace. Besides the deep dark stars, there are also shallow features that resemble dark stars. 

They are rotated by 36o with respect to the deep dark stars, exactly as predicted. We therefore 
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suggest that these shallow dark stars may be incomplete, dissected Bergman clusters, 

whereas the deeper dark stars may be dissected Mackay clusters.  

Recently, Papadopolos et al.[38] have simulated STM images for both Pd- and Pd+ 

terminations in the P-K model. In their simulations, cut Bergman clusters are shallow 

pentagonal holes whereas cut Mackay clusters are deeper, darker pentagonal holes. These 

observations are consistent with the above interpretation of the STM data, such as the image 

in Fig. 7.  

There are also some correlations between density of cut Bergmans and step heights. 

For instance, as given in Table 3, there are no cut Bergman type pentagonal holes on the 

terraces bordered by descending M steps apart from the P-K model. We also note that those 

cut Bergmans have Mn atoms on the vertices of the pentagon in the first plane shown in 

Table 4.  

 

4. Discussion 

No other work has compared different bulk models in the context of surfaces. Instead, 

the standard approach has been to adopt a single model as a benchmark for comparison with 

experimental surface data, or as a platform for theoretical simulations and calculations. An 

analysis of the variability among different models may shed light on the robustness of 

previous analyses, and even allow surface science experiments to be designed that could 

discriminate between different models.  

There has been some controversy over whether dark star sites are Mackay or Bergman 

clusters, truncated at specific levels. The debate has centered on the nature of the atomic 

positions in the dark star site, with little or no attention to different possibilities for the 
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chemical decoration. Any conclusions about this site directly translate into conclusions about 

the white flower site; the two are directly linked by the nature of the terminating plane.  

 Previously, Papadopolos et al. have proposed that the surface terminations belong to 

the Pd+ family, and that the dark star sites are Bergman clusters cut 0.076 nm below the 

center. They extensively analyzed STM images and demonstrated their compatibility with 

certain planes in the P-K model. On the other hand, Krajci et al. have used DFT to analyze 

the surface terminations of an Al-Pd-Mn approximant[35].  

 

4.1. Consequences of chemical diversity on chemisorption.  

It would not be unreasonable to expect chemical bonding of adsorbates at the dark 

star sites to be influenced by the chemical nature of the second pentagon. Hence, in 

chemisorption experiments, some dark star sites may act as trap sites whereas others may be 

more inert. This could explain the fact that the experimental estimates of dark star site 

densities, based upon adsorption and nucleation of Ag adatoms, is somewhat lower than the 

averages expected from the models.   

Simulations of chemisorption have been carried out using two different models. In 

one, 5-fold surfaces of i-Al-Cu-Fe and i-Al-Pd-Mn were modeled using Leonard-Jones 

potentials to construct potential energy surfaces for Al and Ag adatoms, respectively[1, 13, 

37]. In the results of these simulations, several adsorption sites were identified such as 

starfish (dark star) and incomplete starfish (banana). Each of these sites had different depths 

with respect to each other. Especially, the dark stars sites were much deeper at their centers 

than that of the other sites. The banana sites were formed due to the presence of the one Al 
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atom in the first plane close to the center of the dark stars. This Al atom belonged to the inner 

dodecahedron of the Mackay cluster[1, 13, 37]. 

In the second type of modeling study, the 5-fold-like surface of an approximant of i-

Al-Pd-Mn was modeled using DFT to construct potential energy surfaces for a wide variety 

of adsorbates[39, 40]. However, even though the 2/1 rational approximant surface had some 

of the important local configurations, it did not have any true dark star sites. The lack of 

those sites was mainly due to the presence of one or two Al atoms in the first plane close to 

the center of the dark stars. Therefore, this surface had only banana sites for various 

adsorbates and may not represent the real dark star adsorption sites of the quasicrystal 

surfaces.  If we ignore the presence of the Al atoms belong to the inner dodecahedron, we 

can say that the closest bulk model in terms of chemical decorations of those sites is the P-K 

model where all the A and B type dark stars have Al in the first plane and Pd in the second 

plane as given in Table 4.  

   

4.2. Consequences of chemical diversity on STM imaging. 

Using ab initio DFT method, Krajci et al have carried out several STM simulations 

for the fivefold surface of the 3/2 rational approximant[35]. In this approximant surface, 

there are pentagonal holes which are formed when the Mackay clusters are cut 0.252nm 

above the equator. The vertices of the first pentagon are decorated by Al while the vertices of 

the second pentagon in the second plane are decorated by Pd. Their calculations showed that 

in STM imaging the tunneling current was mainly formed by the Al atoms in the first plane 

while the Pd atoms had almost no contribution. As a result of this, Pd atoms which are in the 

second plane should be imaged as dark spots with STM[35]. Moreover, based on their STM 
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simulations and the comparison with the real STM images, they concluded that cut Mackay 

are the dark star sites. It should be noted that their simulations consider only one type of 

chemical decoration for darks star sites. However, from the quasicrystal models one should 

expect to see chemical variations for the darks star sites as given Table 4.  

Ni-Al is another example for Al-transition metal system. These alloys are much 

simpler in terms of their structure and chemical order compared to the quasicrystals and their 

periodic approximants. Recently, Jurczyszyn et al. have carried out a theoretical study on 

formation of STM images of Ni3Al(001) and Ni3Al(111) intermetallics and compared the 

simulation results with the experimental  STM images of Ni3Al(111)[41]. Their study 

pointed that in STM images, Al atoms were imaged dominantly than Ni atoms although both 

Al and Ni were in the same surface plane. The authors concluded that the intra-atomic 

interference of the s and pz orbitals of Al atom was main contributor to the tunneling current. 

In other words, in the transition metal alloy, the tunneling probability of Al with respect to 

that of Ni is much higher so that Al atoms are imaged as bright protrusions and Ni atoms are 

imaged as depressions in the STM images[41].  

These two examples suggest that Al atoms should be imaged differently than 

transition metal atoms. More specifically, in STM images one should expect to see Al atoms 

as protrusions while transition atoms (e.g. Pd, Ni etc.) as depressions. Therefore, Al atoms in 

the second planes close to the center of the dark stars may affect the contrast in the STM 

images so that some of the dark stars should be imaged less deep than the others. Indeed, 

these arguments support the different depth of the dark stars in our STM observations.    
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4.3. White flowers and their chemical diversity on STM imaging. 

Recently, it has been experimentally shown that Bi atoms have preferred to nucleate 

as pentagonal clusters with an edge-length of 0.49 nm at white flower sites, not dark star 

sites[42]. By comparing the STM images with the 3/2 rational approximant structure, the 

authors concluded that the flowers were formed by central cut Mackay clusters and hence, 

the central atom was Mn. Moreover, the authors claimed that Mn atoms in the center played a 

role in the nucleation process via substrate-mediated interaction. Our detailed analyses of the 

structural models suggest that the proposed definition of the white flowers was true but 

incomplete. Therefore it is important to understand the chemical and also structural nature of 

those sites for the nucleation and growth process of these types of adsorbates (e.i. Bi etc.).  

Krajci et at claimed that the Mn atoms in the center of the flower should be imaged 

brighter than the others atoms and depending on their magnetic states their brightness may 

change. Indeed in the high resolution STM images some of the protrusions seem brighter 

compared to the others, for example see Fig. 3a. However, in the models, as discussed in 

section 3.2.2, not all the centers of the white flowers are occupied by Mn. Therefore, the 

cause of the brightness may not be solely explained by the magnetic state of the Mn atoms. A 

slight vertical relaxation in the positions of the central atoms (as well as the some others) 

with respect to the rest of the atoms may affect the contrast in the STM images. In other 

words, the details of the contrast may be partially topographic, which was not considered in 

the simulations. This might be due to the limitations of the DFT calculations.  

 

5. Conclusions 

We have examined four deterministic models for i-AlPdMn quasicrystal in terms of  
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types, densities and chemical decorations of adsorption sites for the fivefold planes. By 

comparing high resolution STM images with the models, we have concluded that the 

pentagonal hollow sites (dark stars) are formed by dissected Mackay clusters, not Bergman 

clusters as previously suggested. In addition, we have found that on some terraces both cut 

Mackays and cut Bergmans exist. Our analysis shows that in all models there are some 

correlations between the heights of steps and densities and/or types of dark stars. Finally, we 

have found that white flower sites are not always formed by dissected Mackays at their 

equator positions. 
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Table and Figure Captions. 

Table 1. Range of densities of cut Mackay (cM) and cut Bergman (cB) pentagonal hollow 

sites in Pd- terminations, from four bulk structure models. In calculating the averages, each 

plane is weighted according to its area. 

Table 2. Densities of pentagonal hollow sites, and of top planes, in specific Pd- terminations 

in the P-K model. 

Table 3. Correlations between step heights (L or M), and densities of terminations and 

densities of pentagonal holes, in the Pd- family, for the four deterministic models. Heights of 

L- and M-type steps are 0.660 nm and 0.408 nm, respectively, for the 5-fold surface of i-Al–

Pd–Mn. In the four deterministic models, a layer is a pair of planes.  

Table 4. Chemical decorations of A, B, and C-type pentagonal hollows from cut Mackays, 

and of pentagonal hollows from cut Bergmans (cB), in the bulk structural models of i-Al-Pd-

Mn quasicrystals. The letters in parentheses denote the type of pentagonal hole, as defined in 

the text.  

Table 5. Chemical decorations of white flowers in the bulk structural models of i-Al-Pd-Mn 

quasicrystals.  

Figure 1. Schematic depiction of atomic planes in the P-K model. The z-axis is the fivefold 

axis. The spatial coordinate is labeled ‘(z)’ because this is the notation used by the authors of 

the model. The height of each line is proportional to the planar atomic density. Within each 

vertical bar, black is Al, gray is Pd, and white is Mn.  

Figure 2. A Mackay cluster. Black marks the vertices of the icosahedron and grey is for the 

vertices of the icosidodecahedron. p 
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Figure 3. (a) An unfiltered STM image of a clean fivefold surface of i-Al-Pd-Mn 

quasicrystal. The tunneling conditions: 0.47 nA and +0.97 V. Size of the image is 25.1 x 12.1 

nm2 . Letters A, B, and C denote the three types of dark stars. Two types of white flowers are 

marked as WF (complete) and WF/ (incomplete). A special local motif called “Ring” is also 

marked. (b) A schematic description of different dark stars and a complete white flower, and 

note that only the first plane atoms are shown.  

Figure 4. STM images of the clean fivefold surface of i-Al-Pd-Mn quasicrystal. The image 

size is 8.6 x 4.5 nm2. (a) Raw data. (b) FFT filtered. Circles show dark stars that appear to 

have extra atom(s) near the central site. This central material is suppressed, and the dark star 

character is enhanced, by filtering. Dashed arrow indicates the cut of the line profiles shown 

at right.  

Figure 5.  A top view of a layer from the P-K model at 2 nm. The size of the layer is 10 x 10 

nm2. Each ball represents an atom and black is Al, blue is Mn and grey is Pd. The circle 

marks the “Ring” motif. Several white flower motifs are also marked by circles.  

Figure 6. (a) A top view of a layer from the P-K model at 3.78 nm. Three types of dark stars 

are marked by circles as A, B and C. Several white flower motifs are also marked by circles. 

In the middle region, a white rectangle shows the region of the cross-section in Fig. 6 (b). 

This is a cut across a B type darks star. It intersects an atom from the disordered inner 

dodecahedron. (b) and (c) a cut 0.252 nm above Mackay cluster. Each ball represents an 

atom and black is Al, blue is Mn and grey is Pd. Al atom in second (first) plane, from the 

inner dodecahedron. The atoms in top-plane pentagon are from the icosidodecahedron. The 

atoms in second-plane pentagon are from the icosahedron. A central atom in the cluster is 

also shown.  
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Figure 7. (a) An FFT filtered STM image of the clean fivefold surface of i-Al-Pd-Mn 

quasicrystal. The size of the image is 7.6 x 6.3 nm2. (b) A layer from the Boudard model is 

formed by a pair planes at 2.39 nm and 2.34 nm, respectively. The size of the layer is 9.7 x 

7.9 nm2. A dark star in (a) and a cut-Mackay in (b) are encircled. Arrows are pointing two Al 

atoms in the second plane.  

Figure 8. A plot shows the density of dark stars (cut-Mackays) versus densities of top planes 

in the P-K model. The plot also shows the density of cut-Bergman type pentagonal holes 

versus top plane density of the layers.



   

  
 
 
 
 

Table 1 
 
 

 

Densities of A-type 
cM pentagonal 

hollows,  
nm-2

Densities of B-type 
cM pentagonal 
hollows,  nm-2

Densities of C-type 
cM pentagonal 
hollows, nm-2

All types of cM 
pentagonal hollows 

combined 
(A+B+C),  

nm-2

 Density of cB  
pentagonal hollows, 

nm-2
 
 
 
 Model Range Average Range Average Range Average Range Average Range Average 
 

Boudard 0-0.170 0.038 0-0.150 0.022 0-0.840 0.190 0-0.840 0.250 0-0.810 0.097  
 K-G 0-0.131 0.036 0-0.150 0.024 0-0.833 0.208 0-0.833 0.268 0-0.770 0.135 
 

Q-G 0-0.180 0.038 0-0.130 0.024 0-0.890 0.194 0-0.890 0.257 0-0.860 0.106  
 P-K 0-0.160 0.039 0-0.150 0.024 0-0.940 0.183 0-0.940 0.246 0-0.930 0.125 

112

 
 
 
 
 
 
 
 
 



   113

 
 

Table 2 
 

Position of 
top plane in 

the 
termination, 

along the 
fivefold 

axis (nm) 

Density of 
A-type cM 
pentagonal 

hollows 
(nm-2) 

Density of 
B-type cM 
pentagonal 

hollows 
(nm-2) 

Density of 
C-type cM 
pentagonal 

hollows 
(nm-2) 

Total 
density of 

cM 
pentagonal 

hollows 
( nm-2) 

Density of 
cB 

pentagonal 
hollows 
(nm-2) 

Atomic 
density of 
top plane 

(nm-2) 

4.800 0.160 0.000 0.000 0.160 0.000 8.170 
4.140 0.000 0.000 0.000 0.000 0.030 8.900 
3.730 0.030 0.050 0.270 0.350 0.000 6.980 
3.070 0.060 0.000 0.000 0.060 0.000 8.600 
2.660 0.000 0.000 0.810 0.810 0.930 4.780 
2.000 0.080 0.150 0.040 0.270 0.000 7.710 
1.340 0.000 0.000 0.000 0.000 0.000 8.820 
0.930 0.000 0.000 0.610 0.610 0.280 5.790 
0.270 0.160 0.000 0.000 0.160 0.000 8.180 
-0.390 0.000 0.000 0.000 0.000 0.040 8.860 
-0.800 0.040 0.040 0.330 0.410 0.000 6.870 
-1.460 0.050 0.000 0.000 0.050 0.000 8.640 
-1.870 0.000 0.000 0.940 0.940 0.640 4.980 
-2.520 0.090 0.090 0.000 0.180 0.000 7.760 
-3.190 0.000 0.000 0.000 0.000 0.010 8.850 
-3.600 0.010 0.000 0.530 0.540 0.100 6.500 
-4.250 0.070 0.000 0.000 0.070 0.000 8.460 

 
 
 
 
 
 
 
 
 



   

 
 

Table 3 
 

Average density of  pentagonal holes in the terminating layer, nm–2. 
(Range of values is given in parentheses.) 

 
 
 
 
 

Model 

Type of step 
bordering 

termination 
in down-

going 
direction 

Average 
atomic 

density in 
top plane of 
termination, 

nm–2
Mackay-like pentagonal holes 

[type is given in brackets] Bergman-like pentagonal holes 

L 6.6 0.405 (0.060-0.940) [A, B, C]         0.238 (0.000-0.723)  
K-G 

 M 8.9 0.025 (0.000-0.063) [A]         0.000  

        0.189 (0.000-0.810) 114 L 6.8 0.431 (0.090-0.840) [A, B, C]  
Boudard 

 M 8.8 0.010 (0.000-0.030) [A]         0.000 

L 6.9 0.405 (0.060-0.940) [A, B, C]         0.207 (0.000-0.930)  
P-K 

 M 8.8 0.016 (0.000-0.060) [A]         0.009 (0.000-0.773) 

L 6.8 0.428 (0.090-0.860) [A, B, C]         0.186 (0.000-0.860)  
QG 

 M 8.8 0.015 (0.000-0.060) [A]         0.000 

 
 

 



   

 
 
 
 
 

Table 4 
 
 

Model Types  
 Type of 

Features Boudard KG QG P-K  
 
 Pentagon in 

top plane Al (A, B, C, cB) Al (A, B, C, cB) Al (A, B, C, cB), 
Mn (A) 

Al (A, B, C, cB), 
 Mn (cB) 
 

Pentagon in 
second plane 

Pd(A, cB), 
Mn[A, B, C], 
Al+Pd(cB), 

Pd+Mn(A, B, C, cB), 
Al+Pd+Mn(C, cB) 

Al(A, B, C), 
Pd(A), 

Mn(A, B, C), 
Al+Mn(B, C, cB), 

Pd+Mn(C, cB), 
Al+Pd+Mn(C, cB) 

Al (A), 
Pd(A, B, C, cB), 
Al+Pd(B, C, cB) 

 
Al(cB), 

Pd (A, B, C), 
Al+Pd (cB), 

Al+Mn(C, cB), 
Pd+Mn(C, cB), 

Al+Pd+Mn(C, cB) 
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Table 5 
 
 

Model Types  

Type of Features Boudard KG QG P-K 

Center atom Al Mn Al Al Mn Al Mn 

Ten atom ring in 
first plane Al Al Al Al Al, 

Al+Mn Al Al 

Pentagon in 
second plane 

Pd, 
Al+Pd, 

Al+Pd+Mn 

Al, 
Al+Pd 

Al, Pd,  
Al+Pd 

Al, 
Pd 

Al, 
Al+Pd 

Pd, 
Al+Pd Al 
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NUCLEATION AND GROWTH OF AG ISLANDS ON FIVE-FOLD AL-PD-MN 

QUASICRYSTAL SURFACES: TEMPERATURE AND FLUX-DEPENDENCE OF 

ISLAND DENSITY 

 

A paper published in Physical Review B 

 

B. Unal, V. Fournée, K.J. Schnitzenbaumer, C. Ghosh, C.J. Jenks, A.R. Ross, T.A. Lograsso, 

J.W. Evans, and P.A. Thiel 

 

Abstract 

Scanning tunneling microscopy (STM) has been used to investigate the nucleation 

and growth of Ag islands on the five-fold surface of an icosahedral Al-Pd-Mn quasicrystal. 

Analysis of the data as a function of deposition temperature, from 127 K to 300 K, reveals 

that island density is constant, while at higher temperature it decreases. To model this 

behavior, we first show that the potential energy surface describing bonding of Ag at various 

locations on the surface is complex, with a few sites acting as traps for clusters of adatoms. 

We then develop a rate equation model which incorporates enhanced nucleation at trap sites 

relative to nucleation at regular sites on terraces. It recovers the temperature-dependence of 

the island density, plus previous flux-scaling data. Our model suggests that the critical size 

for both types of nucleation sites is large–corresponding to stable clusters of at least 6 Ag 

atoms– and that binding between atoms at trap sites is significantly stronger than at free 

terrace sites. The data and the model, combined, provide guidance about the conditions of 

temperature and flux under which saturation of trap sites can be expected. This, in turn, 
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provides a general indicator of the conditions that may favor localized pseudomorphic 

growth at low coverage, here and in other systems. 

 

Introduction 

Quasicrystals are well-ordered but non-periodic materials.1 Their atomic structure is 

associated with interesting surface properties2, 3 such as enhanced oxidation resistance 4 and 

low friction.5 In recent years, much attention has been paid to the possibility that films might 

be grown pseudomorphically on quasicrystal surfaces, thereby yielding surfaces that derive 

the benefits of the quasiperiodic structure, but with a wider range of chemical composition 

than is accessible in bulk samples.6-8 Pseudomorphic growth was indeed demonstrated 

experimentally, originally by Franke et al.,9 and later by other groups, for certain types of 

elemental adlayers.10-12 Pseudomorphic growth has also been explored theoretically.13, 14 The 

properties of such films remain largely unexplored, but preliminary measurements of their 

electronic structure suggest that they adopt the pseudogap at the Fermi edge which is 

associated with the underlying substrate.15  

Many studies of film growth have focused on coverages of a complete monolayer 

(ML) or above, since contiguous coatings would be desirable for some applications. 

However, lower coverages may also be interesting. For example, individual pseudomorphic 

islands might exhibit novel magnetic properties. Pseudomorphism could be more prevalent at 

submonolayer coverages, where adsorbate-adsorbate interactions are more localized, and 

distortions from the bulk structure of the film are thus more easily accommodated. This 

appears to be illustrated by our previous study of Al adsorbed on the five-fold surface of the 

icosahedral (i-) quasicrystal Al-Cu-Fe, where small five-fold clusters were observed at a 
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coverage of about 0.04 ML.10 In comparison, pseudomorphism was not observed in studies 

of Al at or above coverages of 1 ML on a similar substrate, i-Al-Pd-Mn.16  Formation of the 

pseudomorphic clusters in the former case was corroborated theoretically using a kinetic 

Monte Carlo (KMC) simulation of an appropriate “disordered bond network” lattice gas 

model.17  

An equally-important advantage of studying low coverages is that a wealth of 

information can be extracted about the kinetics of island nucleation and growth in the initial 

stages of film formation. This has been shown by the large body of work on crystalline 

substrates and films.18 For this purpose, STM provides invaluable detailed insight. This is 

because the spatial characteristics of films at low coverages, such as the island density, 

reflect the kinetics of non-equilibrium adlayer evolution during deposition. Based upon just 

such data, we previously found evidence for heterogeneous nucleation of Ag on the five-fold 

surface of i-Al-Pd-Mn at 300 K.19 We interpreted the observed flux-independence of island 

density to mean that nucleation occurred preferentially at specific sites--not defect sites, but 

rather trap sites intrinsic to the quasicrystalline structure. We speculated that these trap sites 

were analogous to those that stabilized the pseudomorphic Al starfish on i-Al-Cu-Fe.  

In this paper, we extend the previous Ag work by measuring the temperature 

dependence of Ag island density at ∼0.2 ML, and by showing the data to be compatible with 

a refined mean field-rate equation model that incorporates nucleation at trap sites. We 

delineate the conditions of temperature and flux under which one can expect saturation of 

trap sites, which provides a general indicator of the conditions that may favor localized 

pseudomorphic growth at low coverage, in this and other systems.  
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Experimental Description 

We conduct our experiments using an Omicron variable-temperature STM in a 

standard UHV chamber with a base pressure of 4 x 10-11 mbar. Our sample is a single grain 

of icosahedral Al70.2Pd20.7Mn9.1 quasicrystal with the surface oriented perpendicular to a five-

fold axis. The clean surface is prepared following procedures described elsewhere.20, 21Ag is 

deposited from an electron-beam-heated evaporator, an Omicron EFM modified to resemble 

a Knudsen cell, onto the clean quasicrystal surface at fixed sample temperatures varying from 

127 K to 420 K and at chamber pressures below 8 x  10–11 mbar. STM images are taken at 

the deposition temperature. STM data are processed using image processing freeware.22  

 

Experimental Results 

Figure 1 shows a series of STM images taken after deposition between 0.1 and 0.26 

monolayers (ML) of Ag at a constant flux of 1 x 10–3 ML/s and various substrate 

temperatures. The brighter features in the images are Ag islands. For the temperature range 

of 127 K to 300 K, island sizes are very small as compared to those at higher temperatures, 

and the island density is high. A dramatic decrease in the island density and corresponding 

increase in size is apparent for temperatures above 300 K. At 420 K (Fig. 1f), most of the 

deposited Ag accumulates at step edges (not shown in the image). This indicates that the 

diffusion length has become comparable to the terrace width. However, particularly broad 

terraces still support island formation, an example of which is shown in Fig.1(f). This allows 

a rough assessment of island density at this temperature.  

It should also be noted that, at these low coverages, islands are typically two-

dimensional (2D) at T < 300 K, but three-dimensional (3D) at T > 300 K. The 3D growth has 
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been ascribed to a quantum size effect.23 While this crossover from 2D to 3D shapes does not 

affect our determination and modeling of island densities, it will affect the interpretation of 

island sizes, as discussed later in this section.  

At and below 300 K, the determination of coverage or of island number density is 

complicated by the fact that the clean surface has a rather high intrinsic corrugation, together 

with occasional protrusions. In high-resolution images of well-ordered regions of clean 

terraces, the peak-to-peak corrugation is about 0.12 to 0.16 nm, to be compared with the 

expected step height for a Ag island of about 0.2 nm. (Note that these values depend 

somewhat on tunneling bias.) The corrugation and step height are sufficiently close that 

scanning across Ag islands on the quasicrystal produces a continuum of heights without a 

clear separation of island and substrate contributions, as shown in Fig. 2 for a coverage of 0.2 

ML at 300 K.  The large maximum at about 0.1 nm represents the clean substrate, whereas 

the smaller maximum at about 0.3 nm represents the Ag islands. To determine the island 

density, we introduce a threshold for height located between these peaks, chosen such that 

regions with heights above the threshold are mainly associated with Ag islands (see Fig. 2).  

To further eliminate artifacts in island density estimation due to the existence of occasional 

protrusions on the quasicrystal surfaces,24 we employ a threshold for the minimum areal size 

in addition to the height cutoff. This areal cutoff affects the data only at low temperature, 

where the Ag islands are small. The effect is shown by the error bars at and below 300 K in 

Fig. 3. The error bars demarcate minimum areal island sizes of 0.5  and 1.5 nm2 (the first 

corresponding roughly to single atoms25 and the last to larger clusters of ~6 atoms).10 The 

data points are obtained with a middle value of 1.0 nm2. At and below 300 K, in Figs. 3 and 

4, the statistics are very good since the data are obtained from STM images after counting 
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thousands of islands spanning an area equal to 1 x 106 nm2. Thus the statistical uncertainty is 

much smaller than the error bars shown, at these low temperatures. In contrast, at higher 

temperatures islands are identified unambiguously, and uncertainties are due to the limited 

number of islands. These uncertainties are fairly insignificant, at least on the log-scale of 

Fig.3. 

 Figure 3 shows quantitatively the temperature-dependence of average island density 

for a deposition flux of F = 1 x 10–3 ML/s. The island density is roughly constant up to 300 

K, but abruptly decreases for higher temperatures. This is an indication that heterogeneous 

nucleation at trap sites dominates behavior at lower temperatures.  

 We also determine the influence of flux on the island density at constant temperature, 

300 K. (The flux-scaling data were published previously; here, we present a re-analysis that 

employs the height- and size-thresholds described above.) From Figure 4, it can be seen that 

the island density is insensitive to flux over the range 5 x 10-2  to  

1 x 10-3  ML/s (although there may be a slight drop-off at lowest flux). An independence of 

island density on deposition flux is also consistent with heterogeneous nucleation at specific 

trap sites on the surface.  

  Further analysis of the STM data yields the island size distribution (ISD). Results for 

300 K were presented previously, although there was considerable ambiguity in determining 

the true ISD as it was combined with the distribution of higher substrate protrusions.19 Figure 

5 shows new results from analysis of 365 K data. The total number of islands is about 100, so 

the statistics are somewhat limited (and histogram bins are necessarily chosen to be quite 

broad). One could measure island size either in terms of lateral area, or in terms of the total 

number of atoms (i.e. in terms of volume). The latter is somewhat more generic. The two 
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approaches are equivalent for the single layer islands at lower T, but not when there is a 

mixture of multilayer islands of different heights as at higher T. The 365 K data reveal a 

monotonically decreasing ISD when size is measured as number of atoms. Such a monotonic 

decrease contrasts the monomodal shape of the distribution typical for homoepitaxial or 

heteroepitaxial growth.26 This type of ISD could reflect unusually persistent island 

nucleation, and/or a diminution of growth rate with coverage.27 Plausibly, for this system, 

island growth is inhibited with increasing size (a feature not incorporated into our simple rate 

equation analysis—see following sections) due to the five-fold symmetry of the substrate. 

As an aside, we note that if the ISD at 365 K is determined by taking size as lateral 

area, it is instead monomodal, reflecting the feature that the largest islands are not single 

layer, but tend to have heights of two to four layers in this experiment.23 

 

Development of the model for nucleation and growth of islands 

A. Potential energy surface 

 In developing a model for formation of Ag islands on five-fold Al-Pd-Mn surfaces, it 

is valuable first to have a qualitative picture of the potential energy surface (PES) describing 

the binding energy of Ag as a function of lateral position on this substrate. In previous 

work,28 we did this for Al adatoms, and here we extend the analysis to Ag adatoms. [Other 

authors have recently used LJ parameters to generate the PES of various adsorbates on 

quasicrystals, successfully explaining experimental structures of equilibrated Al monolayers 

and noble gas monolayers.16, 29, 30 Our work differs in that it focuses on the kinetics of 

formation of localized structure.] In our previous work, we identified a subset of physically-

reasonable five-fold terminations of the Boudard model for bulk Al-Pd-Mn structure. We 
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adopt one such termination here. We use pairwise-additive Lennard-Jones (LJ) potentials to 

describe the interaction of Ag with the substrate atoms. Parameters for the LJ potentials are 

chosen to recover diffusion barriers and adsorption site heights for several benchmark 

systems consisting of Ag on single crystal Al and Pd substrates.31 With these interactions, we 

determine the binding energy of Ag as a function of lateral position while keeping substrate 

atoms frozen (apart from a contraction of the top layer spacings, as guided by experiment).3, 

32-38  

A portion of this PES is shown in Fig. 6a. One can identify three regions of strong 

bonding, each with local five-fold symmetry, in the upper left, lower left and lower right 

areas of the figure. One of these is labeled “trap site.” Five other regions of strong bonding, 

where the local five-fold symmetry is broken, are apparent in the upper middle and right 

portion of the figure. In our previous study of Al binding on the related i-Al-Cu-Fe surface, 

these same regions provided the strongest bonding, the former being referred to as starfish 

(SF) sites and the latter as incomplete starfish (ISF) sites. In addition, there is a significant 

number of a third type of localized strong binding site. 

Corresponding features in an STM image of the five-fold Al-Pd-Mn surface are 

shown in Fig. 6b. Here, we identify the SF sites with the “dark stars” often resolved in STM 

images of these surfaces. Experiments have proven that the dark stars are the adsorption sites 

of Al starfish on i-Al-Cu-Fe.6, 10 The SF and ISF sites are strong candidates for the trap sites 

that are manifest so clearly in the experimental data of 

 Figs. 3 and 4.  

 In a complete analysis of the PES, we have identified all local minima or binding 

sites, which include a large number of shallower binding sites in addition to the above-
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mentioned deep sites. Analysis of ~ 600 sites in a 10 x10 nm2 region of the model39 finds 

0.5% of sites are SF, 1% are ISF, 4.5% are other localized deep sites, and 94% are shallow 

sites. The average separation between adjacent minima, regardless of depth, 

 is ~ 0.4 nm. We will use this value as the typical nearest-neighbor separation between 

adatoms in the modeling that follows.  

Utilizing the above information, we can provide the following overview of the 

deposition process (cf. Ref. 17 & 28): Ag atoms are deposited primarily at shallow 

adsorption sites, and hop between such adjacent sites; occasionally they reach strong bonding 

“trap” sites where they remain longer and are more likely to become incorporated into stable 

Ag islands. (We emphasize that these trap sites are intrinsic to the surface quasicrystalline 

structure, and are not defects.) In principle, aggregation into islands on regions of the terrace 

associated with shallow sites is also possible. In our previous modeling of Al deposition on 

Al-Cu-Fe and Al-Pd-Mn, six atom clusters forming at SF sites (and also smaller clusters 

forming at ISF sites) were stabilized more effectively than clusters at non-(I)SF sites, since 

neighboring Al adatoms could readily reduce their separation below the typical value of ~0.4 

nm noted above to maximize Al–Al adatom bonding. This stabilization was not so readily 

achieved at other terrace sites since the large adatom separation of ~0.4 nm is not compatible 

with strong Al–Al bonding. We adopt this feature—namely, different adatom interaction 

strengths at different types of nucleation sites ––in the Ag modeling below. 
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B. Rate equation analysis 

Rate equations are developed for a model of competitive island formation at trap sites 

and on terraces, similar to the ones in the literature for nucleation of metal clusters on oxide 

surfaces with defects.40 Figure 6c shows a schematic of the model. The model parameters 

describing the system are as follows: the trap density (nt); the trap energy (Et > 0) reflecting 

the additional binding at trap sites; the critical nucleus size (i) above which islands are stable 

(and for which we allow different values it for islands at traps, and if on trap-free terrace 

regions); the effective diffusion barrier (Ed > 0), which describes diffusion between 

heterogeneous weaker-binding adsorption sites; and the pairwise-additive nearest-neighbor 

adatom binding energy (Eb > 0). We allow Eb to take different values at traps (Ebt ) than on 

the “free” parts of the terraces (Ebf), and set Ebf = REbt  with R ≤ 1 for reasons discussed 

above. The effective hop rate between neighboring sites on terraces is given by 

h=ν e–Ed (kT) where ν =  1013 s–1. The trap density, nt, is determined experimentally from 

the plateau value in Figure 3.   

Key variables to be determined by integration of the rate equations are the density of 

isolated adatoms, n1 (which is the sum of contributions from traps, n1t, and from “free” 

terrace regions, n1f) and the density of stable islands, nx (which also is a sum of contributions 

from traps, nxt, and terraces, nxf). In this model, stable clusters are regarded as immobile. We 

adjust values of the model parameters described above until the predicted total island density, 

nx, matches experimental behavior. 

We assume that a quasi-equilibrium is established between the adatom densities at the 

traps (n1t) and on the free terrace regions (n1f). Accounting for the feature that adatoms are 
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bound more strongly at traps by an amount Et and that stable islands at traps (with density 

nxt) block the occupation of those traps by adatoms, this quasi-equilibrium assumption yields 

the relation (cf. Ref. 40) 

n1t
nt− nxt

≈
n1f eEt (kT)

1+ n1f eEt (kT)                                                 (1) 

 

where we assume that n1f <<1.The rate equations for densities of stable islands are 

determined by the nucleation rates 

 

dnxt
dt

= Knuct ∝ hn1f nit         (2) 

and    

dnxf
dt

= Knucf ∝ hn1f nif      (3) 

 

where n is the density of critical clusters of i atoms at free terrace (trap) sites which are 

stabilized by addition of one further adatom. In determining these densities, we also adopt a 

quasi-equilibrium Walton relation n

if (nit )

if ≈ e Eif (kT) (n1f ) if  and nit ≈ eEit (kT) n1t (n1f )it−1. 

Here, Ei =miEb denotes the binding energy for critical clusters, which is determined by 

adding the appropriate number, mi, of bond energies, with relevant values of i and Eb for 

islands at traps or on terraces. The aggregation rates Kaggf∝ h(n1f )nxf  and 

Kaggt∝ h(n1f )nxt  also appear in the rate equation for the adatom density 
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dn1f
dt

≈ F−Kaggf −Kaggt − (if +1)Knucf −(it )Knuct   (4) 

 

The constants of proportionality (not shown) in the expressions for nucleation rates and 

aggregation rates are the capture numbers for critical and stable clusters, respectively. These 

are always of order unity, and are set equal to unity in the following analysis. We also note 

that these rate equations are numerically stiff, so a natural rescaling41 is applied before 

numerical integration in order to facilitate integration. 

 In general, the value of mi depends upon the assumed cluster geometry.  The two 

cluster sizes that will be most useful in the modeling will contain 5 and 11 atoms, for which 

we count mi = 7 and 16, respectively.   

 

C. Model limitations and simplifications 

  A significant potential limitation of the rate equation analysis is the assumption of a 

quasi-equilibrium between the population of isolated adatoms at trap sites and free terrace 

sites, and between the population of atoms and critical clusters (i.e., the Walton relation). 

This assumption is expected to be valid at high temperatures, but less so at low temperatures, 

where slow diffusion is expected to inhibit equilibration. A second simplification is the fact 

that the model uses averages or effective values for certain quantities instead of distributions. 

An example is the assumption of a single value of Ebf for atoms in clusters on the free terrace 

sites. On the real surface, there is a distribution of separations between adsorption sites, and 

also of the binding energy at those sites. (Again, see Fig. 6a.) This means that interactions 

between adatoms probably vary as well. A third assumption is that bond energies, Eb, are 
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pairwise-additive within the Ag clusters. Because of these limitations, we do not regard the 

model as quantitatively reliable. We do regard it as useful, however, for showing major 

trends and providing physical insight into the relative importance of the various processes in 

fitting the experimental data.   

 

Modeling Results 

First, let us consider the simplest case, where it = if = 1 (Ag adatom pairs form stable 

nuclei) and thus Eb is not relevant. Such a model has only 2 adjustable parameters: Et and Ed. 

In this case, Fig. 3 shows that the model can reproduce average island density in the low 

temperature regime when Ed and Et are 0.18 and 0.60 eV, respectively.  (We denote this set 

of parameters as Set A, and summarize it in Table I.) While the model reproduces the low-

temperature plateau, it fails to produce a sufficiently rapid decrease in island density above 

300 K with these parameters.  

 Next, we allow it = if  > 1, with Eb fixed at a single nonzero value, i.e. Ebf = Ebt so R = 

Ebf/Ebt = 1. In this case, the model fails to fit the plateau in island density below 300 K. The 

reason is that, for a single binding energy and single critical size, there is no difference 

between the formation of stable clusters at free terrace sites and at trap sites. The vastly 

higher density of the free terrace sites favors nucleation there. Indeed, depending on the 

adjustable parameters below 300 K the number of islands on free terrace sites is 5 to 20 times 

larger than at trap sites, since the latter are limited by nt. (Changing nt within the limits of 

experimental uncertainty does not help.) In our model, this problem cannot be avoided by 

allowing the two critical sizes to take different values. This is true at least for 2 <  if  <  20 

and 2 <  it  < 5. (We regard these two ranges as having physically-reasonable limits.) This 

 
 



 140

shows that introducing a larger critical size at free sites does not provide sufficient bias 

against nucleation at those sites. 

 In order to fit the entire range of data, we find it necessary to allow Ebt and Ebf to take 

independent values, i.e. to use R, their ratio, as an adjustable parameter. As mentioned in 

Section IV, values of R < 1 have some physical justification from the potential energy 

surface. In the rate equation model, introducing R < 1 gives a way to strongly destabilize 

clusters on free terraces. In this case, the trends in the experimental data can be reasonably 

well captured (see Fig. 3) by choosing a single value of critical size, it = if = 5, together with 

Ebt = 0.090 eV , Ed = 0.66 eV and R = 0.10. We denote this set of parameters as Set B. It does 

much better than Set A in matching the  

high-temperature data.  

 However, R = 0.10 is perhaps unrealistically low. Indeed, using the LJ potentials for 

bulk Ag, we estimate that the ratio of the binding energies for Ag-Ag bonds at their 

equilibrium separation, relative to Ag-Ag bonds elongated to 0.40 nm, is 0.33. Consequently, 

we explore the possibility of using higher values of R, coupled with two distinct critical sizes 

for trap and free sites with if > it . Choosing a larger critical size for free terrace sites provides 

some bias against nucleation on free terraces, which compensates for the higher values of R. 

While keeping it = 5, we find that experimental data can be fit well for a range of if ≥ 8 and R 

= 0.15-0.20. The best fit is obtained when it = 5 and if = 11, together with Ebt = 0.090 eV, Ed 

= 0.66 eV, and R = 0.20. See Figure 3. We call this Set C. The parameters for the three best-

fit models are summarized in  

Table I.  
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 The inset in Figure 3 shows the island density on free terrace sites as a function of 

temperature, using Sets B and C. This indicates that some Ag island nucleation does occur on 

regular terrace sites between 200 K and 300. However, it should also be emphasized that the 

contribution of free sites to average island density is low compared to that of trap sites, with 

these parameters.  

What features of the deposition process produce the particular form of nx(T) shown in 

Fig. 3? Insight is provided by Fig. 8. Here, the rate of nucleation at trap sites, Knuct, is shown 

as a function of coverage, for four different values of T. The value of Knuct peaks at low 

coverage and decays. The peak is higher and the decay is faster at low T. At 300 K or below, 

Knuct, has effectively decayed to zero by 0.2 ML, i.e. all traps are saturated by 0.2 ML. For 

higher T, the slower decay of Knuct means that traps are not saturated by 0.2 ML, so nx(T) in 

Fig. 3 drops to lower values. It follows that the temperature at which nx begins to fall in Fig. 

3 would shift to higher values for higher coverages.  

 Finally, the flux-independence of the island density at 300 K can also be fit well. The 

solid lines in Fig. 4 represent the results for Sets B and C. It can be seen that with both sets of 

parameters, the model shows no significant variation with flux for 

 F > 1 x 10-3 ML/s. However, below this value, the model indicates that traps sites are not 

saturated (at this temperature and coverage), so nx falls with decreasing flux.  

 Flux scaling for homogenous nucleation of stable islands that require aggregation of i 

≥ 1 diffusing adatoms in the steady-state regime suggests nx∝F i (i+2) .26, 42 The dash-dotted 

line in Figure 4 reflects this scaling relationship for i = 5. Clearly this behavior does not fit 

experimental observations.   
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 Using our model, we can predict nx versus F at different deposition temperatures (Fig. 

7). The model suggests that at high temperatures such as 345 K and above, the density 

depends on flux for the typical experimental range of fluxes shown (in contrast to behavior at 

300 K and below). It would be interesting to test this prediction experimentally. The lines are 

slightly curved at low flux, but straighten as temperature increases. At 420 K, where the 

relationship is very linear, analysis of the scaling with flux indicates that  nx ∝F0.66 , rather 

than the relationship given above for homogeneous nucleation with i = 5, which would be 

nx∝F 5 7 = F 0.71. To understand this discrepancy, we note that in this regime, n  is 

negligible and most traps are saturated with single adatoms, so n  ≈ n . (Clusters are rare at 

the traps, since n  < n  in the curves of Fig. 7.) Thus, in our rate equation analysis, one can 

neglect n  and simplify the equation for n  to dn

xf

1t t

x t

xf xt xt dt ∝ (n1f )it . Then using a steady-state 

approximation that F −Kaggt ≈ 0, it follows immediately that nx ∝F (it −1) (it +1) . This yields 

an exponent of 2/3, consistent with the numerical results for i = 5. t 

 

Discussion 

The main result is the experimental observation that, for a typical flux, the island 

density is independent of temperature up to 300 K but decreases abruptly above 300 K, for a 

coverage of about 0.2 ML. This signifies that the island density equals the density of intrinsic 

surface traps up to 300 K, but falls at higher T because inhibited nucleation prevents trap 

saturation. The experimental flux dependence of nx at 300 K shows no significant variation, 

except perhaps at lowest flux. Our interpretation is that the island density is again equal to 
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the trap density. Limited data are also presented for the experimental island size distribution, 

showing a monotonic decrease at a single coverage, temperature, and flux.  

A rate equation model shows that two main features must be incorporated to fit the 

temperature-dependent data:  (1) the critical size must be significantly greater than 1, both at 

trap and free terrace sites; and (2) the binding energy of adatoms in the critical cluster must 

be significantly higher at traps than at free terrace sites. The model parameters that provide 

good fits for the temperature-dependence of nx also provide good fits for the flux-dependence 

of nx. The model predicts significant flux dependence at  

T > 300 K, where nx is well below the trap density so that the effect of traps is reduced.  

The growth dynamics that are incorporated into the model can be envisioned as 

follows. Adatoms are deposited on the surface and then diffuse, sometimes visiting trap sites. 

Additional atoms can join to form clusters, potentially either at trap sites or on terraces. 

However, these clusters constantly dissolve and re-form if they are below the size of a stable 

nucleus, i+1. In order for nucleation to be favored at traps, the population of critical clusters 

of size i must be enhanced at the traps. In the case i = 1 (when critical clusters are single 

atoms ), the only important factor is the population of single atoms at trap sites relative to 

free terrace sites, which is determined in our model by the trap site energy, Et. As i increases 

above 1, the binding energy of additional atoms at traps relative to that on terraces, defined in 

our model by R, becomes increasingly important, since this determines the stability of other 

atoms in a trap cluster relative to its free-terrace counterpart. For large critical sizes, such as 

those in our best solutions (Sets B and C), varying Et actually has far less effect than varying 

R, if Et is above a minimum value. In fact, if Et  >  0.40 eV, it has no effect at all, which 

effectively reduces the number of variable parameters. In summary, our model shows that 
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traps are most effective for nucleation when i=1 because traps have a higher population of 

single atoms, and also when i>1 because traps have a higher affinity for additional atoms.  

Although the values of the best-fit parameters are not absolute because of the model 

limitations noted in Section IV, the value of 0.66 eV for Ed is somewhat high when compared 

with simpler crystalline surfaces. For instance, Ed is about 0.5 eV both for Ag/Al(100) and 

Ag/Pd(100), and Ed is much lower—about 0.1 eV—for the (111) faces.31 In general, for 

single crystals, one finds that Ed increases as the surface becomes more corrugated and less 

close-packed.43 Thus, a relatively high value of Ed on the quasicrystal surface may be 

physically reasonable in light of its intrinsic roughness. It should be noted that in the REA, Ed 

is an effective diffusion barrier on the free terrace. Clearly, the surface heterogeneity results 

in a distribution of barriers that separate adjacent minima (Fig. 6a). The effective diffusion 

barrier reflects not only the distribution of real barrier heights but also the sampled diffusion 

paths. This concept of an effective barrier is standard in extensive treatments of transport in 

disordered systems based on homogenization or effective medium theories.44 For our specific 

application, the effective barrier will be primarily controlled by the higher barriers for 

diffusion on the terrace.  

It is interesting that the best value of it is 5, exactly the value expected given the 

stability of the 6-atom starfish clusters observed and modeled for Al on i-Al-Cu-Fe.28 These 

clusters contained 1 atom at the center and 5 atoms at the arms, thus reflecting the local five-

fold symmetry of the surface sites. Hence, the value of the critical cluster size at trap sites 

may be fundamentally related to the five-fold symmetry of the quasicrystalline surface.  
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This system bears certain similarities to transition metal clusters that form at defects 

on oxide45, 46 and fluoride40 surfaces. In some of those systems, the dependence of island 

density on temperature has been measured,40, 45 showing a plateau and then a decline.40, 45  

For one system, Pd/MgO, these data were initially interpreted in terms of a model like 

the one we have used, incorporating strong trapping of adatoms at defects and subsequent 

island nucleation (with i = 1) below the threshold temperature.45 However, this model was 

challenged on the basis of DFT calculations, which indicated that cluster diffusion, as well as 

monomer diffusion, should be operative, and that the surface dimer binding energy necessary 

to fit the data, 1.2 eV, was unreasonably high.47, 48  

We regard cluster diffusion in our system, however, as unlikely. This is because there 

are two primary scenarios wherein diffusion of small clusters on surfaces is expected to 

significantly affect growth: (1) weak bonding to the surface compared to intracluster 

bonding—as is the case for Pd/MgO;48 or (2) a PES for the cluster amenable to concerted 

cluster motion, as for dimers in metal homoepitaxial systems where twisting or shearing 

motion is facile.49 Neither scenario is operative for Ag on Al-Pd-Mn where Ag binds strongly 

to the surface. Inspection of the spatial distribution of absorption sites on the surface (e.g., 

from the LJ PES) suggests no easy twisting pathway. In fact, intracluster binding is likely 

weak due to a large typical separation between neighboring adsorption sites so clusters are 

more likely to dissociate than diffuse. Weak intracluster binding is supported by the low 

value of Eb, 0.090 eV. It is also impossible for clusters to migrate along with the underlying 

traps, as has been suggested for Au clusters on TiO2.46  

Our model is also qualitatively different regarding the metal-metal binding energy, 

which was disputed in the Pd/MgO system.47, 48 Our values of Eb are low: 0.090 eV within 
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the traps, and less on the free terraces by a factor of R. For comparison, the Ag–Ag dimer 

binding energy on a Ag(100) surface is 0.22-0.26 eV.50 The distortion from the equilibrium 

bond length that is imposed by the quasicrystal substrate makes the lower value of 0.090 eV 

plausible. There are also other differences. For instance, critical size was quite small in the 

rate equation analysis of the Pd/MgO system and so Et was an important parameter. Our fits 

imply large critical sizes and hence virtually no dependence on Et, for reasons discussed 

above.   In spite of these differences, the approach that was pioneered by Haas and co-

workers45 appears to be very useful in interpreting results from the present system.  

 Finally, consider the possibility of place exchange between Ag and the quasicrystal 

substrate. We see no evidence of such a process, but if it occurred, its effect on island density 

would be different than our experimental observations. Typically, place exchange is an 

activated process, with a barrier higher than that for hopping-diffusion. Growth of islands at 

exchange sites competes with homogeneous nucleation and growth. These two factors mean 

that island density vs. T or T-1 is a V-shaped curve (or even more complex curve), as has 

been reported for Ni/Ag(100)51 and Co/Cu(100).52 In the case of island nucleation mediated 

entirely by place exchange, there is also a (predicted) strong dependence of island density on 

T, contrasting our experimental observations.53 Hence, place exchange cannot explain our 

experimental observation of a plateau, followed by a decline at high T.  

 

Conclusions 

A main result in this paper is that the Ag island density on the five-fold surface of 

icosahedral Al-Pd-Mn is independent of temperature up to 300 K, but decreases abruptly 

above 300 K, for a typical flux. This indicates that nucleation is dominated by trap sites at 
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and below 300 K. This conclusion is reinforced by the experimental flux dependence of the 

average island density at 300 K. A rate equation model is developed, guided in part by a 

potential energy surface generated from Lennard–Jones potentials. For certain parameters, 

the model is consistent with all of the data. The optimal parameters indicate strong Ag–Ag 

binding at trap sites relative to free terrace sites, and large critical sizes at both types of sites. 

The island size distribution at 365 K is also presented, showing a broad monotonic decrease.  

The data and the modeling, taken together, indicate that saturation of trap sites at low 

coverage is favored by low temperature and high flux. These qualitative guidelines may 

prove useful in searches for pseudomorphic clusters on quasicrystals at submonolayer 

coverages.  

Note added in proof. Recently, it has come to our attention that a considerable body of work 

deals with heterogeneous nucleation of Co on Au, which exhibits some strong similarities 

to this system. See, for instance, Ref. 54. 
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Table and Figure Captions. 

 

Table 1. Parameters for best fits of the rate equation model to the experimental data.  
 

Figure 1. STM images [(a)-(f)] showing the evolution of island density as a function of  

  temperature for deposition of Ag onto 5f-i-Al-Pd-Mn quasicrystal. The size for  

  images is 100 x 100 nm2. The tunneling conditions are 0.97-0.99 V and 0.31-0.47  

  nA. 

Figure 2. An area based height histogram taken from an STM image at Ө = 0.2 ML and T =  

 300 K. Dotted line shows the threshold which partially separates silver islands from  

 the QC substrate.  

Figure 3. Temperature dependence of the average island density, nx, at F = 0.001 ML/s. Solid  

 lines show the predictions obtained from the rate equation model. The inset shows  

 the model’s prediction for the number of islands on regular terrace sites (nxf) as a  

 function of temperature. 

Figure 4. Average island density, nx, versus flux for Ө = 0.2 ML and T = 300 K.  The solid  

 lines depict  predictions from the rate equation model for two cases, Set B and Set  

 C. The expected scaling behavior for homogenous nucleation  for i = 5 is shown by  

 the dash─dotted line.   

Figure 5. Island size distribution from STM images for Ag/Al-Pd-Mn at 365 K, 0.26 ML and  

  F = 1x10–3 ML/s. 
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Figure 6.  (a) (Color online) Potential energy surface (8.6 x 8.6 nm2) for Ag on i-Al-Pd-Mn  

 QC. (b) 8.6 x 8.6 nm2 STM image of clean five-fold surface of i-Al-Pd-Mn QC 

(+0.97 V, 0.47 nA). One of the traps is marked both on STM image and PES. (c) 

Model for nucleation at “trap” sites. n1t is density of trapped single adatoms; nt is 

density of traps, n1f is density of free single adatoms, nxf is density of critical 

clusters formed on terraces and  nxt is density of trapped stable clusters. 

Figure 7. Predictions for average island density, nx, as a function of flux from the rate  

 equation model. Parameter values correspond to Set C: nt = 0.035 nm–2, Ed = 0.66  

 eV, Ebt = 0.090 eV, m11 =16, R = 0.20, if = 11 and it = 5. 

Figure 8. The rate of nucleation at trap sites, Knuct, versus coverage from the rate equation       

 model for set C: nt = 0.035 nm–2, Ed = 0.66 eV, Ebt = 0.090 eV, m11 = 16, R = 0.20, 

if = 11 and it = 5. The inset is an expanded view of the variation in Knuct with 

coverage for the three lowest temperatures. 
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Table 1 

 
Parameter Set A B C 

it 1 5 5 

if 1 5 11 

Ed  (eV) 0.18 0.66 0.66 

Et  (eV) 0.60 0.50 0.50 

Ebt (eV) -- 0.090 0.090 

R = Ebf / Ebt -- 0.10 0.20 
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Abstract 

Nucleation of Ag islands on the five-fold surface of icosahedral Al–Pd–Mn is 

influenced strongly by trap sites. Submonolayers of Ag prepared by deposition at 365K and 

with a flux of 1 X 10-3 monolayers/s exhibit a variation in Ag island densities across different 

terraces. Comparisons with previous work and with rate equation analysis indicate that trap 

sites are not saturated under these experimental conditions and that the difference in island 

densities is not necessarily due to variation in trap densities. While it could have a number of 

different origins, our results point to a terrace-dependent value of the effective diffusion 

barrier for Ag adatoms. 

 

Introduction 

Studies of nucleation and growth of solid films on low-index surfaces of crystalline 

metals and semiconductors have yielded a wealth of information about surface kinetics and 

surface processes, often quite unexpected. Surfaces of quasicrystals are much more complex, 

both chemically and structurally, than the surfaces mentioned above. Therefore, one might 

expect a new range of phenomena to be discovered on quasicrystals and on other complex 
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surfaces. Studies of nucleation and growth on quasicrystals are still in their infancy. 

Previously, we have studied the characteristics, at low coverage, of Ag and Al islands on 

quasicrystalline Al–Pd–Mn and Al–Cu–Fe, respectively.1–4 The data indicated that the 

islands nucleate at trap sites that are intrinsic to the surface structure, yet are so far separated 

that the system exhibits characteristics of heterogeneous nucleation. For Ag deposition, for 

instance, we have observed that island density is independent of both flux and temperature 

over large ranges of experimental parameters. These traits signify heterogeneous nucleation 

at trap sites. The trap sites were identified experimentally as the so-called ‘dark stars’ 

observed often in scanning tunneling microscopy of the clean surfaces.5, 6 Kinetic Monte 

Carlo (KMC) simulation of an appropriate ‘disordered bond network’ lattice gas model 

supported the role of trap sites on the surface.7 Rate equation analysis (REA) of the data 

indicated furthermore that the critical nucleus size is large (i≥5) and that Ag–Ag binding 

at trap sites is stronger than Ag–Ag binding at other types of terrace sites8. 

In this paper, we present new data for Ag islands deposited at 365K on the five-fold 

(5f) surface of icosahedral (i-) Al–Pd–Mn. The data show that island density is not uniform 

on all terraces. The previously-developed REA helps to interpret this observation. 

 

Experimental Description 

Our sample is a single grain of i-Al70.2Pd20.7Mn9.1. The details of sample preparation 

and characterization are given elsewhere9. In brief, we sputter the sample with Ar+ at 1 keV 

for 30 min and then anneal for 3 h in the range of 900–950 K. The sample is cooled to 700K 

at a controlled rate of 12.5 K/min. All of the Scanning Tunnelling Microscopy (STM) images 

are taken at room temperature under tunneling conditions of 0.47 nA and +0.97 V, using an 
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Omicron variable-temperature microscope. The base pressure of the ultrahigh vacuum 

chamber throughout the STM experiments is below 4 X 10-11 Torr. The Ag is deposited from 

an Omicron vapour deposition source at a flux of 1 X 10-3 monolayers/s, with the sample 

held at 365 K. 

 

Experimental Results 

Figures 1a and b show STM images taken in two experiments where Ag was  

deposited to a total coverage, θ, of about 0.1 monolayer (ML). Each frame gives a semi-

three-dimensional view of the STM image. On each terrace, the small features – the bumps – 

are the Ag islands. One is encircled and labeled in figure 1a. There is also evidence that some 

Ag is captured at the edges of terraces, because it creates a step edge of different height than 

the clean terrace, although that is not obvious in the view shown in figure 1. 

These data illustrate that the island density is not the same on all terraces. In 

particular, near the middle of each image one finds a terrace where the island density is much 

lower than on the adjoining terraces. The island density is roughly an order of magnitude 

lower on the island-deficient terraces than on the neighboring ones (although the low number 

of islands on the near-barren terraces leads to poor statistics). In our four observations of this 

phenomenon after deposition at 365 K, we found that a lower island density was always 

associated with a terrace bordered by a particular set of step heights. (On the 5f surfaces of i-

Al–Pd–Mn and i-Al–Cu–Fe, two common step heights are 0.66 and 0.41 nm. In figure 1, 

these steps are labeled L and M, respectively). Terraces with few or no islands were bordered 

by a 0.66-nm (L) step in the uphill direction, and by a combined (0.41þ0.66 nm) (ML) step in 

the downhill direction. In the latter case, the 0.41-nm step – not the 0.66-nm step – was 
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always adjacent to the terrace in question, while the 0.66-nm step was below the 0.41-nm 

step. We could determine this sequence in two ways. First, in some cases 

(e.g. figure 1b), the ML steps diverge in some regions and combine in others. In other words, 

a pair of steps that is combined in one region breaks apart to make two single steps of 

different heights in another region. In the case of figure 1b, the region where the steps 

diverge is not shown. In other cases, we can distinguish the sequence because there is a small 

inflection between the steps. This is actually visible upon close inspection of the ML step of 

figure 1a. 

In any given experiment, island density is constant on the other terraces – those 

that are bordered by step heights different than the values mentioned above – to within ±30% 

or better. It is not clear whether this variation represents statistical uncertainty alone, or if it 

also reflects a true variation among terraces. In either case, the island density on the island-

deficient terraces in figure 1 is significantly different than the densities on the neighbouring 

terraces. 

 

Rate equation analysis (REA) 

The REA has been described in detail elsewhere.8  Briefly, it assumes that deposited 

atoms diffuse at a rate governed by an average activation barrier for diffusion, Ed. The 

adsorption energy is stronger at trap sites than at other terrace sites by an amount Et. Atoms 

can form islands, either at trap sites or at trap-free sites (i.e. ‘free’ sites) on terraces, with 

binding energy Eb per neighbouring pair. Different values of Eb are allowed at free sites and 

trap sites, with the ratio defined as R. Clusters at or below the critical size, i, are unstable; 

they are in quasi-equilibrium with single atoms on the terrace. 
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These parameters were adjusted until the temperature-dependence of the island 

density, nx(T ), matched the experimental data (the experimental island density was obtained 

by averaging over many terraces). We found an optimal fit when i=5, R=0.10, and Ed=0.66 

eV. An equally-good fit to the data could be obtained by allowing different values of i at free 

sites and at trap sites (if=11 and it=5, respectively), together with a more physically 

reasonable value of R=0.20. The same parameters that reproduced the temperature-

dependence of the island density (at fixed flux and θ) also reproduced the flux-scaling of the 

island density (at fixed T and θ). 

The form of nx(T) predicted by the model with optimal parameters, under the 

conditions of the present experiments, i.e. with F=1 X 10-3 ML/s and θ=0.1, is illustrated by 

curve A of figure 2. The curve is flat up to 300 K, where stable islands cover all trap sites, 

followed by a decline where stable islands cannot completely saturate the traps, at this flux 

and coverage. In the model, the value of nx=0.035/nm2 at the plateau in curve A is taken from 

experimental data and is set equal to the trap density, nt.8

The REA produced a model for nucleation and growth of Ag islands that successfully 

described experimental data averaged over many terraces. However, on quasicrystalline 

surfaces, individual terraces are structurally and compositionally different10. To understand 

nucleation and growth on individual terraces, we assess the impact of changing the best-fit 

parameters at the coverage, flux and temperature of the experiments (figure 1). Relative to 

curve A, the effect of changing trap density (alone) is shown by curve B in figure 2. Here, the 

trap density is higher by a factor of 3, so the height of the plateau is three times higher. The 

curves do not overlap in the nonlinear region at high temperature (see figure 2 inset), 
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indicating that trap density would affect island density at 365 K. Relative to curve A, the 

effect of increasing the diffusion barrier slightly (by a factor of 1.06) is shown by curve C. 

This change displaces the curve to higher T, which would also affect island density 

at 365 K. 

The sensitivity of nx to these and other parameters at 365K is shown in figure 3. 

Here, the ordinate is the ratio of nx to the value predicted by the model with all of the 

best-fit parameters, nx0=1.7 X 10-3nm-2. The abscissa is the variable parameter (S ) 

normalized to its optimal value (S0), over a range of  ±10%. To generate each curve, all 

parameters were held at the ‘best-fit’ values listed in the inset to figure 3, except for the 

parameter that serves to label the curve in the figure. Clearly, the island density at this 

temperature, flux and coverage is most dependent upon Ed. There is also some variation with 

Ebt, but essentially no dependence on R, nt or Et over this range. 

 

Discussion 

We consider three possible explanations for the different island densities shown 

in figure 1. 

The first is terrace widths. In principle, terrace widths can affect island densities 

due to competition between island nucleation and capture of deposited atoms at step 

edges (step flow). For sufficiently narrow terraces or high temperatures, capture at step edges 

can lead to lower island density. The temperature of 365K used in these experiments is 

sufficiently high to allow observable capture at step edges, along with island formation.8 

However, in each of the STM images of figure 1, the island deficient terrace is comparable in 
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width to at least one other terrace where the island density is visibly larger. Thus, terrace 

widths cannot account for the observed island depletion. 

The second is the Ehrlich–Schwoebel (ES) barrier, which is an additional energy 

barrier (additional to the terrace diffusion barrier) encountered by a particle as it diffuses 

down a step. If steps of different heights were to have different ES barriers, then deposited 

atoms could more easily diffuse downward over some steps than others, leading to a 

depletion in islands near the low-barrier steps. This explanation is attractive, given that our 

depleted terraces are bound by steps with specific heights. However, it cannot account for the 

near-total absence of islands on certain terraces. The terraces with low ES barriers would be 

distinguished by a denuded zone near the downward step, but not by complete depletion, 

since the separation between islands on other terraces is far less than the terrace width. 

The third possible explanation is that variations in atomic-scale structure of the 

terraces affect nucleation. Terraces of icosahedral quasicrystals are not expected to be 

structurally identical [10]. However, terraces are similar in the sense that they contain similar 

local configurations, albeit at different densities. Since a trap (a dark star) is a local feature, a 

first reaction to the data of figure 1 might be to say that a terrace with few islands must have 

few traps. However, the REA shows that this interpretation is too simplistic. At 365 K, the 

traps are far from saturation and changing the trap density has a rather small impact. 

The two parameters that significantly affect island density are Ed and Ebt. Of these, Ebt 

describes a local phenomenon that would be expected to be invariant between terraces. 

Specifically, the binding energy between Ag atoms at a trap island, Ebt, should depend 

mainly upon the configuration of surface atoms at the trap site. The diffusion barrier, Ed, on 

the other hand, is an effective diffusion barrier on the free terrace. The heterogeneity of the 
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quasicrystal surface results in a distribution of real, local barriers that separate adjacent 

minima. The value of Ed reflects not only the distribution of real barrier heights but also the 

sampled diffusion paths. Hence, it is reasonable to expect that Ed is sensitive to the long-

range atomic arrangement. At the same time, the REA indicates that a very small 

change in this parameter affects island density strongly, under conditions where traps are not 

saturated. Hence, the diffusion barrier is an appealing candidate to explain the variation in 

island density among terraces, although, of course, other factors – including trap density – 

may contribute as well. If this interpretation is correct, then the Ag on the depleted terraces is 

preferentially captured at step edges and one should see more Ag decorating those step edges 

than others. From our STM images, however, it was not practical to compare the amount of 

Ag at the step edges. 

Sharma et al.11  have studied the growth of Sn on the 5f surface of i-Al–Cu–Fe. 

They observed Stranski–Krastanov growth, i.e. smooth growth followed by three-

dimensional clusters. At high coverage (about 15 monolayers), they reported that the density 

and size of the Sn clusters varied from terrace to terrace. Despite the differences between 

their work and ours, both studies point to differences in film growth on different terraces. 

Sharma et al.11  speculated that the inhomogeneity could be due to different densities of 

nucleation centres, diffusion barriers, and step edge barriers. 

From a broad perspective, our work shows that there are two main regimes where 

differences in terraces can affect island densities at submonolayer coverage. Above room 

temperature (as in the present experiments), traps are not saturated and a variety of factors 

can contribute to non-uniform island densities. At lower temperatures (and at appropriate 

values of flux and coverage8), all traps are saturated and the island density simply equals the 
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trap density. This corresponds to the plateau region in the curves of figure 2. In this regime, 

terrace-dependent island densities could unambiguously be attributed to terrace-dependent 

trap densities. Future investigations in the latter regime may further clarify the terrace-

dependence of trap densities, versus other factors, in nucleation at these intriguing surfaces. 

 

Conclusions 

At submonolayer coverage, we observe a variation in Ag island densities on terraces 

of i-Al–Pd–Mn at 365 K. Comparisons with previous work, and with rate equation analysis, 

indicate that trap sites are not saturated under these experimental conditions. Therefore, the 

different island densities could have a number of origins. Terrace-dependence in the effective 

diffusion barrier for Ag adatoms is a strong candidate. 
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Figure Captions 

 

Figure 1. STM images of Ag islands on terraces following deposition at 365 K. Steps are 

 labeled with their height, where L=0.66nm and M=0.41 nm. (a) 326 X 326nm2,  

  0.13 ML.(b) 500 X 500nm2, 0.10 ML. 

Figure 2. nx(T ) for (A) the best-fit parameters, (B) the same as (A) except nt=0.10 and 

(C) the same as (A) except Ed=0.70 eV. All curves are generated for F=1X10-3 

ML/s and θ=0.10 to correspond to experimental conditions. The inset is a magnified 

view of the same three curves at temperatures where traps are not saturated. 
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Figure 3. Sensitivity of normalized island density to change in a single model parameter, 

 S, at T=365 K, F=1 X 10-3M/s, θ=0.10, corresponding to the experimental  

 conditions of figure 1. The single parameter is varied, while all other parameters are  

 held at the best-fit values indicated in the inset. Each curve in the figure is labeled  

 with the parameter that was changed. Using all of the best-fit parameters, the model  

 predicts a value of the island density, nx0, of 1.7 X 10-3nm-2 at 365 K. 
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ABSTRACT 

We have investigated the growth of Ag films on fivefold surfaces of icosahedral Al-

Pd-Mn quasicrystal using a variable temperature scanning tunneling microscope. We observe 

that at 365 K Ag nucleates heterogeneously and forms 2D quasiperiodic islands. Then as 

total coverage increases, those 2D islands quickly convert into 3D islands with a subsequent 

growth to a selected height of 3 layers followed by lateral spreading. We propose that 

increased strain for islands with larger radii, as well as enhanced lateral binding in higher 

layers, triggers the transition from 2D to 3D growth. A quantum size effect, reflected in 

stronger absorption by a few 10’s of meV for atoms on top of the second layer, then suffices 

to produce the development of mesa-like, 3-layer-high islands and the associated inhibition 

of 4th layer nucleation. This growth sequence for individual islands is modeled within a step 

dynamics formulation incorporating the above-mentioned features.  
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1. INTRODUCTION 

 Recent studies of the growth of thin metal films on certain substrates have revealed 

the presence of unexpected “quantum size effects” (QSE) [1]. The basic physical feature 

underlying QSE is that electrons are confined vertically in the metal film. This in turn leads 

to a significant dependence of the surface energy (and of the adsorption energy of individual 

metal atoms) on film thickness.  As a result, novel film morphologies can develop exhibiting 

islands or mesas with selected heights corresponding to lower surface energies. The most 

commonly studied systems exhibiting QSE are Pb or Ag films on semiconductor and metal 

surfaces [1-4]. Examples of substrates for these Ag films include GaAs(110) [2], Si(111) [3], 

Fe(100) [5], NiAl(110) [6], and 5-fold symmetric surfaces of icosohedral (i-) AlPdMn 

quasicrystal [7]. In the latter system, considered exclusively in this study, thin films of 

roughly 0.3-1.5 monolayers (ML) of Ag deposited at 365 K were shown to exhibit a 

predominance of mesa-like 3-layer high islands. The origin of QSE in this system is believed 

to be a deep minimum in the electronic density of states at the Fermi level, called a 

pseudogap, which is a common feature for Al-rich quasicrystals due to both structural and 

sp-d hybridization effects [7].  

The goal of this study is two-fold. First, in Sec.2, we shall provide a comprehensive 

characterization from scanning tunneling microscopy (STM) studies of the morphology of 

Ag films deposited on 5-fold i-AlPdMn at 365 K. We focus on the initial stages of growth as 

manifested by the development of separated 3D islands with selected heights of 3 layers. In 

addition to presenting images of the film morphology, we shall characterize the height and 

shape of islands as a function of their size, and also quantify the film height distribution and 

roughness as a function of coverage. We do also briefly compare the development of film 
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roughness with coverage at 365 K with behavior observed at lower temperatures. Second, in 

Sec.3, we shall develop and apply a theoretical framework which can elucidate the evolution 

of 3D island shapes prior to coalescence in this complex film growth system. We develop a 

step dynamics model [8-10] focusing on the growth of each individual island by 

incorporation of atoms deposited within its “capture zone” on the substrate. One retains a 

discrete description of the vertical layers within the island, but describes the step edge 

bounding each 2D layer by a continuous circular curve. Thus, the model must appropriately 

specify the rate of growth of the radius for each level, as well as providing a criterion for 

nucleation or creation of new top layer islands [8-10]. Within this formulation, we 

incorporate what we believe is the essential physics for this system: (i) strain reduced 

bonding at the edges of larger islands, and enhanced bonding at island edges in higher layers 

(due to relaxation towards a bulk Ag fcc structure), which together promote 3D island 

growth; (ii) stronger adsorption of Ag atoms on top of the second layer due to QSE which 

promotes the formation of mesa-like 3-high islands, and inhibits nucleation of the 4th layer. 

We make a physically reasonable selection of energetic parameters and present the associated 

model predictions. Finally, we provide our conclusions in Sec.4. 

 

2. EXPERIMENTAL PROCEDURES AND OBSERVATIONS 

 A surface of a single-grain icosahedral Al72Pd19.5Mn8.5 was cut perpendicularly to a 

fivefold axis within ±0.25° and mechanically polished with diamond paste down to 0.25 μm. 

Clean surface was prepared in an ultra-high vacuum system with base pressure of  4x10-11 

mbar by repeated cycles of ion sputtering (Ar+, 0.5-2.5 keV, 30 min.) and annealing (up to 

940 K). Such a preparation produces a surface with a bulk-terminated terrace-step 
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morphology [1]. The structural quality of the 5-fold surface was checked down to atomic 

scale with STM, comparing against bulk structural models [11, 12]. Ag was evaporated from 

an Omicron electron-beam-heated evaporator with internal flux monitor modified to 

resemble a Knudsen cell. The deposition flux was around 10-3 ML/sec keeping the pressure 

below 2 x 10-10 mbar during deposition. The flux calibration of the Ag source is obtained via 

directly measuring the coverage from the STM images. The imaging was acquired at the 

deposition temperatures for the growing Ag films with an Omicron VT-STM. The STM data 

were processed using an image processing freeware [13]. 

 

2A. ISLAND MORPHOLOGIES 

 Our previous investigations of the initial stages of deposition for coverages θ up to 

θ~0.1 ML in this system indicated that 2D Ag islands form by heterogeneous nucleation at 

trap sites corresponding to so-called dark-star (dS) sites on the substrate [14]. These dS sites 

are saturated by islands for deposition at 300 K and below [14, 15], but only partially 

populated at higher temperatures [14]. This behavior was described within a rate equation 

formulation [14] where nucleation was enhanced at traps sites due to stronger absorption 

relative to terrace sites. Data was fit choosing a critical size of i=5 (corresponding to the 

smallest stable cluster being a pentagonal starfish shaped island with five arm atoms 

surrounding a central atom) for temperatures from 365 K down to some value below 300 K 

[16]. More recent detailed and comprehensive analyses of the models for quasicrystal 

structure have indicated that not all dS sites are identical, so plausibly those populated by Ag 

islands at 365 K constitute somewhat stronger adsorption sites for Ag than the others [12]. 
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Figure 1 shows a series of semi-three dimensional STM images that demonstrate the 

development of the film morphologies for coverages, θ = (a) 0.26 ML, (b) 0.7 ML, (c) and 1 

ML Ag films deposited at 365 K on a fivefold surface of i-Al-Pd-Mn. Fig.1 (d) shows line 

profiles from typical individual Ag islands in (a)-(c), which fall into distinc regions of island 

height. As total coverage increases, 1-layer-high Ag islands become 2-layer-high and then 

they transform into 3-layer-high, flat-top islands. Once the 3-layer-high mesas form, the 

islands grow laterally while keeping their height constant although ultimately 4 and higher 

layer islands develop. 

Figure 2 shows the corresponding film height distributions, i.e., the area of islands or 

mesas as a function of their height and also corresponding areal occupancies of the each layer. 

To determine the height of the individual Ag island, the STM images were divided into 

smaller sections so that each section contained only one Ag island, and then, an areal height 

histogram was obtained based on the local region of the island, from which the height of the 

each island was measured. In addition, at the same time, the area of the each island was 

determined via applying an appropriate height threshold to the STM image. Here, for each 

total coverage value, about 120 islands were analyzed from the STM images spanning a total 

area equal to 1x106 nm2. The islands that formed at the step edges were excluded in our 

analysis.  

As it can be seen from Fig. 2 (a) and (b), islands with a specific number of layers 

actually have a distribution of heights. The average height of 1-, 2-, 3- and 4-layer-high 

islands is 0.26 nm, 0.53 nm, 0.82 nm and 1.06 nm. The spread of heights for islands with a 

specific number of layers is 0.08 nm. None of these values corresponds to any interplanar 

spacing of bulk fcc Ag. The variation of the height may be mainly due to the small structural 
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differences of the each island not due to the bias conditions. Since, we also did bias 

dependent experiments from -0.95 V to +0.95 V where we did not observe any significant 

bias dependent height change for the Ag islands in this system.  

The data in Fig. 2 (c) reveals that even at a lower Ag coverage of 0.26 ML majority 

(ca. 60%) of the 2D islands which form initially (as described above for θ ~ 0.1 ML films) 

have already transformed into 3D multilayer islands. As shown in Fig. 2 (d), by 0.7 ML, the 

strong propensity for the selection of 3-layer-high islands is evident. More specially, 1- and 

2-layer-high islands were converted to 3-layer-high islands as coverage increased and hence 

about 90% of the total islands are 3-layer-high. This propensity persists for 1-1.5 ML Ag 

films which differ from those at 0.7 ML mainly by the lateral expansion of 3-layer-high 

islands. Nucleation of 4-layer-high islands is rare at 0.7 ML, but more prevalent for higher 

coverages. 

 More detailed examination of the STM data at the lower coverage of 0.26 ML reveals 

that the propensity for selection of 3-layer-high islands is even stronger than suggested by the 

corresponding height histogram in Fig. 2 (c). Note that at 0.26 ML, there is a significant 

spread in island sizes (measured by the number of atoms or the volume). If one size selects 

the larger islands, then the majority of these islands already have a height of 3 layers. In other 

words, it takes a certain minimum number of atoms before an island can achieve the selected 

height, but then this height is strongly favored in subsequent growth. As indicated above, 

once islands reach a height of 3 layers, they tend to spread laterally adopting a mesa-like 

structure bounded by relatively steep side walls. Thus, for this system it appears that the 

height (and more generally the shape) of islands is primarily determined by their size, at least 

for heights up to 3 layers. Thus, the height of an island of a certain size is largely independent 
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of features of the local environment of that island such as the area of its capture zone [17]. 

However, at 0.26 ML, there are some 1-layer-high islands whose sizes are larger than that of 

the 2-layer-high islands and there are also some 2-layer-high islands whose sizes are larger 

than that of the 3-layer-high islands. All of these observations suggest that nucleation process 

of a new layer has also a stochastic side.  

Examination of the images at 0.7 ML or 1 ML also indicates that the rare 4-layer-high 

islands tend to correspond to those islands which have the largest size. This should be 

expected since inhibited nucleation of the 4th layer (described below) will be facilitated the 

larger the size of the 3rd supporting layer. However, 4th layer nucleation is a highly stochastic 

process, so sometimes this occurs by chance on smaller three-layer-high islands. 

Figure 3 shows the structure of one-layer-high Ag island. It is so clear the Ag adapts 

the fivefold symmetry of the quasicrystalline structure of the substrate. Since the structure is 

not fcc type for the first-layer, one expects that the Ag film is highly strained. Our previous 

studies at 300K for this system showed that as the height of the island increased the structure 

of the Ag islands transformed into fcc type[15, 18].  

 

2B. KINETIC ROUGHENING 

 For film coverages approaching 2 ML, there is a significant coalescence of the height-

selected 3-layer-high (and other) islands which reduces the rate of film roughening. On these 

larger coalesced platforms, nucleation of higher layers is facilitated, as indicated above for 4th 

layer nucleation. The resulting morphologies of thicker films appear to be fairly smooth 

without any strong preference for any specific height above 3. Fig.4 shows the evolution of 

the film roughness, W (the root-mean-square variation of the film height distribution), with 
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coverage for deposition at 365 K, as well as for lower T. To elucidate behavior at 365 K, it is 

instructive to consider an idealized model for exclusive formation of perfect 3-layer-high 

islands which then grow laterally until forming a complete flat 3-layer-high film (before 

nucleation of higher layers). In this model, one has 

 

W = d 3(θ/3)1/2(1-θ/3)1/2 for θ ≤ 3 ML,     (1) 

 

This behavior is shown as a dashed curve in Fig.4 where d denotes the average interlayer 

spacing with a value of 0.26 nm for this system. For growth at 365 K up to 2 ML, the overall 

behavior of W is close to this form: below θ ~ 1ML, W is somewhat lower since some 

islands are less than 3 layers high; above θ ~1 ML, W is somewhat higher due to nucleation 

of higher layers before completion of the 3rd layer. 

For growth at 300 K, upwards transport is operative leading to rapid formation of 3D 

islands. However, upward transport is not efficient enough for these islands to readily 

achieve selected height, and consequently one finds instead a range of smaller island heights. 

Correspondingly W initially increases quickly, but then decreases around θ ~ 1ML as these 

islands undergo significant coalescence (this coalescence-induced smoothing regime 

occurring at a lower coverage than for taller islands). For even low T of 127 K or 200K, 

upward transport is evidently severely inhibited. Consequently, film growth is significantly 

smoother than at 300 K or higher. Generally, the observed behavior at low T lies between 

that for conventional layer-by-layer growth where W = d θ1/2 (1- θ)1/2 for θ ≤ 1, and that for 

rough Poisson growth where W = d θ1/2 (both shown as dot-dashed curves in Fig.4) [19].  
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3. STEP DYNAMICS MODELING OF THE GROWTH OF INDIVIDUAL 3D 

ISLANDS 

 As indicated in Sec.1, our step dynamics formulation represents the atomic layers 

within a single multilayer 3D island by concentric circles with radii ri for layers i=1, 2, 3….  

The island is located at the center of a circular capture zone of radius R, and incorporates all 

atoms which are deposited within that capture zone. Below, r denotes the distance from the 

center of the island. Complete model specification involves prescribing the evolution of the 

radii, ri, as well as the conditions for creation of new top layers. See Fig. 5 (a). In the 

following, we use dimensionless units for lateral areas and distances where the mean area per 

adsorption site is set to unity. Thus, the unit of distance reflects the average separation 

between adjacent adsorption sites of a few angstroms. Based on the data in Fig.1, the typical 

capture zone radii, R, (roughly half mean island separation) are in the range of R ~ 50-100. 

Also, the transition from 2D to 3D growth occurs when the radii r1 of the 1st layer islands 

reaches roughly r1 ~ 10.  

Step dynamics models have been applied previously to describe both steepening and 

slope selection of 3D islands or “mounds” formed during homoepitaxial growth in the 

presence of a step edge barrier inhibiting downward transport [20, 21]. Growth was 

considered mainly in the lower temperature regime of irreversible capture of diffusing atoms 

at steps. Step dynamics modeling has also been used to describe post-deposition relaxation 

necessarily in the regime of reversible attachment at step edges [22]. The current treatment 

incorporates aspects of both types of studies. However, the Ag/5-f-i-Al-Pd-Mn system is 

extremely complex, with many unknown energetic parameters controlling film growth. Thus, 
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our modeling should be viewed only as semi-quantitative, indicating physically plausible 

selections for these parameters. 

 

3A. BASIC STEP DYNAMICS FORMULATION 

 The rate of change of the radii, ri, for various layers within the 3D island are 

determined by the net attachment fluxes of diffusing adatoms to these step edges [8-10, 20-

22]. These are obtained by solving the appropriate deposition-diffusion equations for the 

adatom density, n, on each terrace. See Fig.5 (b). Below, neq
i+ (neq

i-) denotes the adatom 

density directly above (below) step i as determined by attachment-detachment equilibrium. 

We assume that there is no barrier for attachment to ascending steps, but an Ehrlich-

Schwoebel step-edge barrier, δ, inhibiting attachment to descending steps. The latter can be 

characterized by an attachment length LES = exp(βδ) - 1 for inverse temperature β=1/(kBT). 

Finally, let F denotes the deposition flux in ML per unit time, and D denote the terrace 

diffusion coefficient. Then, on the annular terrace bounded by descending step i and 

ascending step i+1, one solves the boundary value problem: 

 

d/dt n = F + D∇2 n ≈ 0 for ri+1 < r < ri, with 

             (2) 

n = neq
(i+1)- at r=ri+1, and ∂/∂r n = -(n – neq

i+)/LES at r=ri. 

 

We will decompose the solution to (2) as a sum of “deposition” and “equilibration” 

parts, n = ndep + neq. Here, ndep is the solution of (2) after setting neq
i+ = neq

(i+1)- =0 

corresponding to irreversible attachment at steps. Also, neq is the solution to (2) after setting 
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F to zero, but retaining the non-zero equilibrium densities at step edges. The total attachment 

fluxes, J, integrating along steps are correspondingly decomposed into “deposition” and 

“equilibration” components. One can identify a single equilibribration flux Jeq
i→i+1 across the 

terrace, defined as the net flux of atoms detaching from step i and attaching to step i+1, which 

has the form 

 

Jeq
i→i+1/F = 2π (D/F) [(LES/ri) + ln(ri/ri+1)]-1 [neq

(i+1)- - neq
i+].    (3)  

 

For the deposition flux, one must separately specify the fluxes of atoms, Jdep
i+ > 0 and Jdep

(i+1)- 

> 0, deposited on the terrace ri+1 < r < ri attaching to step i from above, and to step i+1 from 

below, respectively. From mass conservation, it immediately follows that 

 

 [Jdep
i+ + Jdep

(i+1)-]/F = π(ri
2 – ri+1

2).       (4) 

 

Of course, the relative magnitude of these two fluxes depends on the magnitude of the step 

edge barrier, with Jdep
i+ → 0, as δ→∞. See the Appendix for details. 

 The basic evolution equation for step i located between steps i-1 and i+1 has the form 

 

 d/dt (π ri
2) = Jeq

i-1→i - Jeq
i→i+1 + Jdep

i- + Jdep
i+.      (5) 

 

Separate treatments for the bottom and top steps are required. These simply account for the 

feature that all atoms deposited on the substrate (within the island’s capture zone) attach to 

the lower step, and all atoms depositing on top of the highest layer island attach to the top 
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step. One must also specify the condition for creation of new top layer islands. In this system, 

adatom densities are quite high, so one expects island nucleation occurs quickly once 

conditions are right for survival of new islands with radii r≈1. Thus, we create new islands as 

soon as there would be a net flux of attachment to such islands. This generally requires that 

the radius of the supporting layer be sufficiently large that adatom detachment from its edge 

is enhanced by strain effects. 

 

3B. INCORPORATION OF QSE, STRAIN, AND LAYER-DEPENDENT STEP 

BINDING 

 Much of the essential physics underlying development of height-selected islands is 

incorporated into the specification of the equilibrium adatom densities at step edges. The 

equilibrium adatom densities, neq
i±, at step edges are determined from the corresponding 

adatom chemical potentials, μad
i± = -Eads

i± + kT ln(neq
i±) [23], where Eads

i± >0 denote the 

adsorption energy of the adatom on the underlying layer (i.e., layer i for neq
i+, and layer i-1 

for neq
i-), These chemical potentials are determined by the requirement that they equal the 

chemical potential, μstep
i, for step i which is written as μstep

i = - Eads
i- - Estep

i + μrep
i. Here, Estep

i 

>0 denotes the contribution associated with lateral binding energy of adatoms at the step, and 

μrep
i denotes the contribution due to step-step repulsion which only becomes important for 

closely spaced steps. See the Appendix. Setting ΔEads
i = Eads

i+ - Eads
i-, one obtains the key 

results 

 

neq
i- =  exp[β(-Estep

i +μrep
i)], and neq

i+ = neq
i- exp[β ΔEads

i].    (6) 
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Thus, neq
i- is independent of the adsorption energies, in contrast to neq

i+.  

In our modeling, all adsorption energies will be chosen equal except for binding on 

top of the 2nd layer which is enhanced due to QSE by ΔEQSE>0 (a few 10’s of meV). This 

reflects the preference for 3-high islands. Thus, one has that neq
2+ = neq

2- exp[βΔEQSE] > neq
2-,  

and neq
3+ = neq

3- exp[-βΔEQSE] < neq
3-, but all other neq

i+ = neq
i-. These inequalities underlie the 

enhancement of growth of the 3rd layer, and inhibition of nucleation of the 4th layer. 

To complete the model specification, we decompose the lateral binding energy at the 

step as Estep
i = Estep

i(ri) = Eb
i - αi/ri - ε f(ri/rc). The first term, Eb

i, denotes the lateral binding 

energy in the absence of curvature effects or strain. This can depend on layer index i. The 

second term accounts for reduced binding due to higher step edge curvature. The step energy, 

αi, is chosen to satisfy αi ≈ Ei
b/3 based on behavior for fcc(111) surfaces with nearest-

neighbor interactions. The last term accounts for reduced binding to step edges in larger 

islands once the radius, ri, becomes comparable to rc ≈ 10 due to a buildup of strain. The 

maximum strain-related reduction in bonding for very large islands corresponds to ε. Thus, 

f(x) must increase from 0 to 1 with increasing x, and for simplicity we choose f(x) = 1-e-x.  

 

3C. PARAMETER SELECTION AND NUMERICAL SIMULATIONS 

 In our modeling, we choose a fairly high terrace diffusion barrier Ed ≈ 0.57 eV for Ag 

on top of “rough” Ag layers in multilayer islands. This exceeds Ed ≈ 0.45 eV for smoother 

Ag(100) surfaces [10]. The step edge barrier is chosen as δ ≈ 0.10−0.15 eV, typical values 

for Ag homoepitaxial systems [10]. The attempt frequency for all hops is chosen as ν = 1012 
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s-1 and the deposition flux is F = 10-3 ML/s matching experiment. Thus, since D = ν exp(-

βEd), one has that D/F ≈ 107.1 and LES ≈ 23 at 365 K. For Ag adatoms on fivefold i-Al-Pd-Mn, 

nearest-neighbor binding is quite weak as adsorption sites are generally far-separated [14, 24]. 

However, adatom separations in higher layers should tend to relax back toward bulk fcc 

values, noting that the upper surfaces of thick Ag films grown at 300 K exhibit fcc(111) 

structure. Thus, the adatom binding should increase somewhat with increasing layer height. 

Consequently, below we choose Ei
b = 0.27, 0.30, 0.32, 0.33,… eV for i = 1, 2, 3, 4,… 

respectively, so ΔEi
b = Ei+1

b – Ei
b >0 (cf. Eb ≈ 0.40 eV for Ag(100), and Eb ≈ 0.60 eV for 

Ag(111) surfaces) [10]. We now analyze some key features of island growth at 365 K for this 

choice of parameters. 

First, consider “triggering” of the transformation from 2D to 3D islands when r1 ≈ 10. 

This requires that the total flux, Jeq
1→2 + Jdep

2-, of atoms attaching to a just formed 2nd layer 

island of radius r2 ≈ 1 should be positive (so that the island will grow rather than shrink). One 

has that Jdep
2- / F ≈ 0.6 π r1

2 ≈ 102.3 (see the Appendix) and from (3) for the equilibration flux 

that 

 

        Jeq
1→2/F ≈ 103.5 (exp[β(ε f(r1/rc) + 0.090/r1)] – exp[β(ε f(r2/rc) + 0.100/r2 -ΔE1

b)]). (7) 

 

The magnitude of Jeq
1→2 will typically dominates that of Jdep

2-, so the condition for nucleation 

of the 2nd layer is that the exponent in the 1st term of (7) dominate that of the 2nd term. 

Physically, this means that the combined effect of increased strain for the larger 1st layer 

island and the enhanced binding in the 2nd layer dominate the effect of higher curvature of the 
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2nd layer island to produce a positive flux. For r1 ≈ rc ≈ 10, r2 ≈ 1, and ΔE1
b = 0.03 eV, this 

implies that ε ≥ 0.1 eV, so we choose ε = 0.1 eV below. For continued growth after 2nd layer 

nucleation,  Jeq
1→2 is large and comparable to the flux of atoms attaching to the 1st layer step 

due to deposition on the substrate, Jdep
1-. Thus, there is a significant uphill flow of atoms 

facilitated by stronger binding in the 2nd layer and promoting 3D island growth. Similarly, 

nucleation and growth of the 3rd layer is facilitated by enhanced binding in the 3rd layer 

relative to the 2nd layer (ΔE2
b>0). 

Second, consider the role of QSE with regard to formation of 3rd and 4th layer islands. 

We choose ΔEQSE ≈ 0.037 eV based on DFT studies for various thin metal films [4-6]. 

Examination of the expression for Jeq
2→3/F analogous to (7) indicates that this flux is 

enhanced both by QSE, ΔEQSE >0, and by enhanced binding in the 3rd layer relative to the 2nd, 

ΔE2
b > 0. This produces nucleation of the 3rd layer for r2<10 (see below). Both effects also 

promote rapid expansion of the 3rd layer and the development of mesa-like, 3-layer-high 

islands with steep edges. This follows from the large value of  

 

Jeq
2→3/F ≈ 103.1 eβε [exp(+βΔEQSE) – exp(-βΔE2

b)] ≈ 104.7    (8) 

 

for r3>>r2>>1 (neglecting step-step interactions), noting that this flux is much smaller and 

determined by curvature differences for ΔEQSE = ΔE2
b =0. Examination of the expression for 

Jeq
3→4/F analogous to (7) indicates that the effect of QSE dominates that of enhanced binding 

in the 4th (relative to the 3rd) layer (ΔEQSE > ΔE3
b) tending to keep this flux negative, 
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inhibiting nucleation of the 4th layer. Thus, nucleation can only occur if this negative flux is 

counterbalanced by sufficiently large deposition flux, Jdep
4-/F ≈ π r3

2 which requires large r3. 

  

 Numerical analysis of our step dynamics model was performed with the above 

parameter choice. This analysis involved integration of the coupled non-linear equations (5) 

for the radii of different layers in the 3D island. Each time the radius of the top layer reaches 

a critical value for nucleation of the next layer, one introduces a new equation for the 

evolution of the radius of that island which starts with a value rtop = 1. The equation for the 

layer must then be updated to account for the presence of this new top layer. Results shown 

in Fig.6 illustrate that the model recovers the key features of island formation seen in 

experiment: a transition to 3D island growth when the first layer island radius reaches r1≈10; 

subsequent development and lateral spreading of a mesa-like 3-layer high island with steep 

edge (corresponding to closely spaced values for r1, r2 and r3); and delayed nucleation of the 

4th layer occurring only when r1 ≈ 47.  

 

4. CONCLUSIONS 

 Growth of Ag films on a fivefold i-Al-Pd-Mn surface is shown to exhibit strong 

quantum size effects (QSE) in the form of 3D islands with a strong preference for the 

selection of a height of 3 layers. We develop and apply a step dynamics formulation to 

provide for the first time a characterization of the development of 3D islands and their height 

selection for a system exhibiting QSE. The key physical features driving the behavior in this 

system and which were incorporated into our step dynamics model (i.e., strain induced 

weaken of binding at step edges, enhanced binding in higher layers, and enhanced adsorption 
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in specific higher layers) should be present in a variety of other systems exhibiting 3D 

growth and QSE. 

 

APPENDIX: FURTHER DETAILS OF THE STEP DYNAMICS FORMULATION 

 The solution to the boundary-value problem (2) for the adatom density, n, on a terrace 

bounded by a descending circular step of radius ri and an ascending circular step of radius ri+1 

(<ri) has the form n(r) = -r2 / (4D/F) + c1 ln r + c2. The constants ci are determined by the 

boundary conditions. The total fluxes for net attachment on the bounding step edges are 

given by J = ±2π r D ∂n/∂r |step, where + (-) applies for r = ri+1 (r = ri). In Sec.3A, we have 

described the decomposition on n and J into “deposition” and “equilibration” parts. The 

explicit form of the single equilibration flux across the terrace is given in (3). The explicit 

forms for the deposition fluxes for attachment to ascending step i+1, Jdep
(i+1)-, and descending 

step i, Jdep
i+, are 

 

Jdep
(i+1)–/F = π ri+1

2 ([½ (ri+1
2/ri

2) – ½ + (LES/ri)(ri+1/ri)2][ln(ri+1/ri) + LES/ri+1]-1 – 1) 

           (9) 

Jdep
i+/F = π ri

2 (1 – [ ½ – ½ (ri+1
2/ri

2) + (LES/ri)][ln(ri+1/ri) + LES/ri+1]-1) 

 

From (10), one immediately obtains the mass conservation condition (4). In Sec.3B, we 

specified the form of the chemical potential, μstep
i, for step i, and extracted the associated 

equilibrium adatom densities. The contribution, μi
rep, associated with step-step repulsion has 

the form [22] 
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μi
rep ≈ 2γ/(ri-1 – ri)3 - 2γ/(ri – ri+1)3,      (10) 

 

where step i between steps i+1 and i-1. Thus, μi
rep increases as step i catches up to step i-1 

ahead of it, and decreases as the trailing step i+1 catches up to i. For the bottom (top) step in 

the island, only the negative (positive) term appears. These terms inhibit steps from getting 

too close and prohibit step crossing in our model. In our model, we choose γ = 0.05 to 0.1 eV. 

As  γ increases, the separation between the steps increases. However, for this range of values, 

the change in step separations is a few unit cells and hence the results are virtually the same.   
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Figure Captions 

Figure 1. (Color online) Semi-three dimensional STM images for Ag films for (a) 0.26 ML, 

(b) 0.70 ML, and (c)1.0 ML. (d) Line profiles from (typical) individual Ag islands showing 

the sequence of island shapes versus the size of the islands as a function of coverage. The 

sizes of the images are 243 nm x 243 nm. The tunneling conditions for the images are + 0.95-

0.97 V, 0.44 nA.  

Figure 2. Corresponding island height distributions showing the island area versus island 

height for (a) 0.26 ML and (b) 0.70 ML. Areal occupancy of the each layer for (c) 0.26 ML 

and (d) 0.7 ML. 

Figure 3. (Color online) A 23.4 nm x 19.6 nm STM image showing the pseudomorphic 

structure of one-layer-high Ag island. The tunneling condition is + 0.99 V, 0.46 nA.  

Figure 4. Film roughness, W, versus total coverage, θ, for 127 K, 200 K, 300 K and 365 K. 

W1 for layer-by-layer growth, W2 for Poisson growth and W3 for ideal 3-layer-high growth. 

Figure 5. (a) Schematic of the 3D island geometry for the step dynamics modeling. (Cross-

sectional view of 3-layer-high island showing radii ri with r3<r2<r1 and well as capture zone 

radius R.) Schematic also superimposes the PES for the binding energy of single Ag atoms. 

(b) Schematic of the adatom density around the terrace bounded by steps 2 and 3 showing the 

influence of QSE. 

Figure 6. Results of step dynamics simulations showing the island radius of each layer versus 

total coverage. The simulation values are QSE = 0.037 eV, R = 25.0 nm, Ed = 0.57 eV, ε = 

0.1 eV, γ = 0.05 eV, δ = 0.15eV, rc =  2.5 nm, α1 = 0.0900 eV, α2 = 0.1000 eV, α3 = 0.1030 

eV, α4 = 0.1134 eV , E1 = 0.27 eV,   E2 = 0.30 eV, E3 = 0.32 eV, E4 = 0.33 eV. 
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Abstract 

Scanning tunneling microscopy (STM) studies of the deposition of Ag on bcc 

NiAl(110) in the temperature range of 200 K to 300 K reveal an initial bilayer growth mode. 

In this regime, which encompasses at least the first two levels of bilayer islands, the film 

appears to have an fcc Ag(110)-like structure. Selection of this structure reflects an almost 

perfect lateral match between the Ag(110) and NiAl(110) lattice constants. Density 

functional theory (DFT) analysis of supported Ag films with an ideal fcc(110) structure on 

NiAl(110) indicates that the bilayer growth mode is promoted by a quantum size effect.  

However, the system does not exhibit perfect Ag(110) film growth. STM analysis reveals 

that the tops of Ag islands are decorated by a ripple structure even in the initial levels of 

growth, and also shows a deviation from Ag(110)-like bilayer growth to Ag(111)-like 

monolayer growth for thick films. DFT analysis is also applied to provide some insight into 

the observed deviations from perfect Ag(110) film structure.  
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I. Introduction 

There has been extensive experimental and theoretical analysis for both 

homoepitaxial and heteroepitaxial growth of thin metal films.1-3 The great majority of these 

studies have used single-element single-crystal substrates. However, using instead 

intermetallics as substrates or “templates” for thin film growth provides significant additional 

possibilities for guiding film structure and morphology. This strategy could potentially lead 

to novel nanostructures with tailored properties for surface enhanced Raman spectroscopy, 

catalysis, magnetism, or other applications. 

To explore such possibilities, in this paper, we examine the structure of Ag films 

grown on one such substrate, the binary alloy NiAl(110). This combination of materials is 

structurally intriguing because the bulk structures of the substrate and film are fundamentally 

different, NiAl being CsCl (bcc-like, aNiAl = 0.289 nm) and Ag being fcc (aAg = 0.408 nm). 

However, there is virtually perfect in-plane lattice matching between Ag(110) and 

NiAl(110). This feature is illustrated in Fig. 1(a)-(b). Consequently, this system provides an 

ideal candidate in which to study morphological evolution during heteroepitaxy in the 

absence of a lateral mismatch strain. In particular, it is of interest to determine whether Ag 

adopts the fcc(110) structure atop this NiAl template.  

 The NiAl surface has attracted much attention in the past, for several main reasons. 

First, NiAl is of technological importance in high-temperature applications such as turbines.4 

Second, thin layers of alumina can be grown on this surface that are both well-ordered and 

conductive. These layers serve as tractable models for the alumina supports common in 

heterogeneous catalysts.5 Third, the electronic structure of NiAl(110) includes a small 

depression in the density of states at the Fermi edge.6 This feature has led to its selection as a 



 207

substrate for growth of one dimensional atomic wires both theoretically7 and experimentally8-

10 (the latter being formed via atomic manipulation at low temperature), with focus on 

fundamental electronic and magnetic traits of the wires.  

As a result of this widespread interest, the NiAl surface is reasonably well-

characterized. As shown in Fig. 1(a), the arrangement of atoms in the (110) plane is 

anisotropic, consisting of rows of Ni and Al atoms in a 1:1 stoichiometry. In a previous 

structure determination using multiple scattering analysis of intensity-voltage variation of 

low-energy electron diffraction (LEED) spots,11 the (110) surface was found to be bulk-

terminated, except for two features. The first was a rumpling of the top layer in which the Al 

atoms protrude above the Ni atoms by 0.02 nm. The second was a first interlayer expansion 

of a few percent (assuming that the Al atoms define the topmost plane). The structure was 

confirmed by medium energy ion scattering,12 and by X-ray scattering.13 This 

characterization was further supported by density functional (DFT) calculations,7, 14 and 

reconfirmed in our own analysis. 

 Numerous studies of Ag thin film growth on a variety of other substrates have been 

reported. From these, a few pertinent generalizations can be drawn. First, Ag films do not 

alloy with other transition metal substrates at room temperature. Alloying occurs in some 

systems, but only at temperatures of ca. 500 K or above.15-31 While Ag can insert into surface 

planes of pure Al substrates, 32 Ag is not known to react with surfaces of alloys containing Al 

and earlier transition metals such as Ni or Pd at room temperature. 33, 34  Presumably, this is 

because the Al-Ni bond is much stronger than the Al-Ag or Ni-Ag bond, as reflected in the 

heats of formation of the respective 1:1 alloys.35-37 Thus, alloying is not anticipated in the 

present work, wherein Ag is deposited at 200 K and 300 K. Second, the low surface energy 
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of Ag usually leads the first few layers to ‘wet’ the substrate, although strain can trigger 

three-dimensional growth in higher layers (Stranski-Krastanov growth). An example of the 

latter is Ag on W(110).17, 38 Finally, clean films of Ag (and also Au) that are sufficiently 

thick—on the order of 10-50 layers or more—tend to exhibit an fcc(111) orientation or be 

vicinal to the (111).e.g. 33, 39-42 This tendency prevails on diverse substrates, although details of 

the film morphology such as twinning and defect structure may depend upon the interface, 

and some exceptions can be found.  

 In Sec. II, we provide some background on our experimental procedures and on our 

supporting DFT calculations. In Sec. III, we present the main results of our study. First, we 

describe scanning tunneling microscopy (STM) observations for multilayer growth of Ag 

films mediated by nucleation and growth of islands within each level. In this paper, “layer” 

denotes an essentially flat, low-index atomic plane, whereas “level” corresponds to islands of 

a specific height, labeled according to sequence of appearance with increasing Ag coverage. 

We will argue that two Ag(110)-like layers—i.e., a (110) bilayer—comprise each of the first 

two levels. We will propose that as the film thickens, a transition occurs and eventually 

single Ag(111)-like layers—i.e. (111) monolayers—comprise each level. DFT analyses of 

benchmark ideal fcc Ag(110) film structures supported on a NiAl(110) substrate are then 

presented together with evidence that a quantum size effect promotes the initial bilayer 

growth. We also describe more subtle deviations features of growth including rippling of the 

tops of Ag islands. Additional DFT analysis of other film structures is presented which 

elucidates the rippling and which also provides insight into the deviation from bilayer growth 

for thicker films. Some further discussion is provided in Sec. IV. An Appendix briefly 
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describes the adsorption site of isolated Ag adatoms on NiAl(110), adatom diffusion, and the 

Ag-Ag interactions that lead to the observed island shapes.  

 

II. Details of Experiments and Calculations 

 A NiAl single crystal was grown using the Bridgman technique.43 The samples were 

oriented and sectioned from the ingot by electrical discharge machining.  The NiAl surface 

was oriented to within ± 0.25o of the (110) orientation, then polished using standard 

metallographic techniques. The polished sample was mounted on an Omicron heater and 

introduced into an ultrahigh-vacuum chamber equipped with Auger electron spectroscopy 

(AES), LEED and STM. The base pressure of the chamber was 2 × 10-11 Torr. The sample 

was cleaned by repeated cycles of Ar+ sputtering (20 min., 1.5 KeV, T = 300 K) followed by 

annealing to 1200 K for 2 hours, until the surface was judged clean by AES, LEED and 

STM. The annealing temperature corresponds to about 2/3 of the melting point, 1915 K. 

STM images were processed using WSXM software.44 

 STM images reveal that these sample preparation procedures can produce a NiAl(110) 

surface with broad terraces (up to 1 µm wide). In the data presented in this work, specifically, 

the terraces were up to 110 nm wide for deposition of Ag at 300 K, and up to 260 nm at 200 

K. The terraces were separated by monoatomic steps and step bunches. Line scans across 

these steps indicated a step height of 0.204 + 0.006 nm, nearly equal to the value of 0.2014 

nm expected from the bulk lattice constant of NiAl. We were thereby able to calibrate the z-

piezo in the STM, a key requirement for our subsequent characterization of vertical surface 

structure. 

 In our thin film growth studies, Ag was evaporated from a commercial Omicron 
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source. However, this source had a rather open design, and so we modified it with a cap 

containing a 1.25 mm orifice. This made the arrangement more like a true Knudsen cell. The 

base pressure was below 10-10 Torr during deposition. Flux calibration of the source was 

achieved by measuring the coverage directly from the STM images at low coverage. The 

estimated flux value was 1.6 × 10-3 bilayers s-1 (where a bilayer is defined as two layers of a 

perfect Ag(110) film) for the studies conducted at a surface temperature of 300 K, and 3.3 × 

10-3 bilayers s-1 for those done at 200 K.  

 Some STM data are also reported for comparative studies of Ag deposition on Ag(110). 

These experiments were performed in a different chamber, with base pressure below 1x10-10 

Torr.  The Ag(110) sample was cleaned by repeated cycles of Ar+ sputtering (20 min, 0.5 

KeV, T ≈ 300K) followed by annealing at 700 K. The Ag was deposited at 220 K, and the 

flux was 4.5 × 10-2 monolayers s-1.   

For our electronic structure calculations, we used DFT with the generalized gradient 

approximation (GGA) proposed by Perdew, Burke, and Ernzerhof.45 The single-particle 

Kohn-Sham equations46 were solved using the plane-wave-based Vienna ab initio simulation 

package (VASP).47 The electron-ion interactions were described by the projector augmented-

wave (PAW) approach.48 The energy cutoff for the plane-wave basis was set to be the default 

value for freestanding or supported Ag(110) films. The converged magnitude of the forces on 

all relaxed atoms was always less than 0.1 eV/nm. To prevent spurious interactions between 

adjacent replicas of the thin film system, we used a vacuum layer that was 1.5 nm thick in the 

direction perpendicular to the surface. The optimized lattice constants were 0.2896 nm for 

NiAl, and 0.4168 nm for Ag, to be compared with experimental values of 0.289 and 0.408 

nm, respectively. These theoretical lattice constants were used in all subsequent calculations.  
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As background for our analysis of supported Ag films on NiAl(110) presented below, 

some brief remarks on the DFT predictions for the structure of the clean NiAl(110) surface 

follow. Our DFT calculations reproduced the experimental results reasonably well. For 

instance, the vertical separation between surface Ni and Al atoms is 0.017 nm from our DFT 

[for a 21-layer NiAl(110) slab], whereas it is  0.016 nm from X-ray scattering,13 and 0.022 

nm from LEED.11 The first interlayer spacing49 is larger than the bulk value by 3.1% from 

our DFT, compared with 3.8+0.6% from X-ray scattering,13 4.6% from LEED,11 and 

5.0+2.0% from MEIS.12 Our calculations further showed that the surface energy of clean 

NiAl(110) is 1.57 J/m2 for the fully-relaxed surface. This is, as might be expected, 

comparable to but lower than the value obtained from a previous DFT analysis of a fixed 

(unrelaxed) substrate, 1.65 J/m2.50 Furthermore, it is higher than the surface energy of 

Ag(110), 1.24 – 1.42 J/m2.51, 52 Hence, surface energy differences should drive Ag(110) films 

to grow layer-by-layer on NiAl(110), although this prediction is rather crude because it 

ignores the interfacial energy.  

Finally, one might anticipate quantum size effects associated with the finite thickness of 

the slab of NiAl(110) substrate used in calculations below for supported Ag films. Indeed, 

calculations for NiAl(110) slabs of various thickness did indicate some variation of the 

surface energy of thin Ag films. However, in this work comparisons are made while holding 

the NiAl slab thickness constant, so this effect should not impact our analysis of relative 

energetics associated with supported Ag films of various thicknesses.  
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III. Experimental and Theoretical Results for Ag Films on NiAl(110) 

A. Ag island step heights from STM data 

Figures 2 and 3 show STM images of Ag islands deposited on NiAl(110) at 200 K 

and 300 K, respectively, for various film thicknesses (the associated coverages being 

reported in units of Ag(110) bilayers), together with representative information about step 

heights. From the STM images shown in the top row of each figure, it is clear that Ag forms 

two-dimensional (2D) islands. These islands are large and display highly anisotropic, 

rectangular shapes. Diffusion across terraces is sufficiently rapid at 300 K that, for a terrace 

width of about 100 nm or less and for the deposition rate specified above, Ag islands grow 

outward from steps as long finger-like protrusions. This behavior corresponds to step flow 

growth. Diffusion is slower at 200 K, so that islands nucleate and grow in the middle of 

terraces, as well as at step edges. See the Appendix for a brief discussion of terrace diffusion 

of individual Ag adatoms on NiAl(110), together with the strong anisotropy in adatom 

interactions which produces elongated islands, and the adsorption site. 

Histograms of the pixel heights in a smaller region of the surface (chosen within a 

single terrace of the substrate) are shown in the middle row of each figure. The separations 

between peaks (which are labeled by the level of islands above the substrate) correspond to 

the average island or step heights, d, within the sampled region. The bottom rows show 

representative line profiles, from which representative values of the step heights, d, can also 

be derived. (Profiles are taken from a variety of images at different locations on the surface, 

not just from the images shown.) We analyze both line profiles and histograms because 

profiles show individual characteristics, while histograms obscure individual peculiarities but 

provide objective average values.  
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As an aside, note that the average coverage quoted above the STM images does not 

correspond exactly to the average level of the film surface in the sampled region, where the 

latter can be extracted from the histograms. There are two reasons for this discrepancy. First, 

histograms are taken from small areas in which the local coverage can fluctuate significantly. 

Second, the density of Ag atoms depends on the level, as will be clear from the discussion 

below. 

Figure 4 and Table I show average values of d, determined from histograms, for 

islands in different levels. The results are virtually identical when line profiles are used. It 

can be seen that there is no significant difference between step heights at 200 K or 300 K. 

The step height is 0.32 nm for the first-level islands, and 0.29 nm for the second-level 

islands, at both temperatures. These are about twice the value expected for an Ag(110) 

monolayer. As the island level increases (moving higher up in the film) the step height 

decreases and eventually levels off in the range of 0.21-0.24 nm.  

Electronic effects could influence measurements of step height. This possibility is 

strongest for the first-level islands, i.e. those directly atop the NiAl(110) substrate. Electronic 

effects can be revealed by changing the tunneling bias. A measurement of step height, for 

islands within the first level at 200 K, vs. tunneling voltage is shown in the inset to Fig. 4 by 

the triangular symbols, corresponding to the top abscissa.  The step height of 0.32 nm does 

not change strongly with bias voltage, and hence we conclude that 0.32 nm is a topographic 

value (reflecting positions of ion cores). For higher-level islands, where growth resembles 

homoepitaxy, an electronic effect known as Smoluchowski smoothening could conceivably 

influence STM measurements if the islands were very small (containing a few tens of atoms) 
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and closely-spaced (within a few tenths of nm).53 However, the islands in our data are much 

too large and well-separated for the Smoluchowski effect to be significant. 

It is instructive to compare these Ag islands with ones grown on the (110) surface of 

bulk Ag. The latter are shown in Fig. 5(a) for deposition at 220 K. Like the Ag/NiAl(110) 

islands, the Ag/Ag(110) islands are flat and elongated. The histogram in Fig. 5(c) reveals that 

they have a step height of d = 0.15 nm. Furthermore, this is the step height of intrinsic 

surface terraces on Ag(110), which is also shown by Fig. 5(b). This value of d equals the 

bulk interplanar spacing, 0.145 nm, as shown in Fig. 1(b).  

The step height for Ag/Ag(110) is about half of the value for the first- and second-

level islands of Ag/NiAl(110). Whereas Ag islands on bulk Ag(110) form single layers, we 

propose that Ag islands on NiAl(110) are essentially Ag(110) bilayers, at least in the first two 

levels. The structure of an Ag bilayer of Ag(110) on NiAl(110) is illustrated in Fig. 1(d), and 

for completeness the structure of an Ag(110) monolayer is illustrated in Fig. 1(c). 

As noted above, the average island height decreases as island level increases. At the 

high-coverage limit, the heights of the Ag islands, 0.21-0.24 nm, are bracketed by those 

expected for Ag(111), 0.236 nm, or Ag(100), 0.204 nm, but are significantly larger than the 

step height of Ag(110), 0.145 nm. This indicates that bilayer growth does not continue, and 

that the atomic structure is not that of perfect Ag(110), in the higher-level islands. 

Specifically, we propose that there is a transition from Ag(110)-like bilayer growth to 

Ag(111)-like monolayer growth. See also Sec. III.D. 

Finally, it should be noted that islands are sometimes observed within the second 

level which do not fit the above description. These are illustrated in Fig. 6. These anomalous 

islands are always 2 nm wide, and they range in length from about 5 nm to 30 nm. We find 
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them only within the second level. They are 0.09-0.11 nm higher than the surrounding Ag 

surface constituting the top of first-level islands. Very occasionally, they merge with normal 

(higher and wider) bilayer islands, as in Fig. 6(d). In such a case, the width of the anomalous 

island is still 2 nm but its height is about 0.14 nm. These single-layer Ag islands may serve as 

precursors to the bilayer, within the second level.  

 

B. Benchmark DFT studies of structure and energetics for an ideal fcc 

Ag(110)/NiAl(110) film: Rational for initial bilayer growth. 

We have performed extensive DFT calculations to assess the energetics of ideal 

Ag(110) films of various thicknesses on the NiAl(110) substrate. In the surface free energy 

calculations, we used a (1x1) lateral unit cell, thus enforcing perfect lateral periodicity. We 

used 15x15x1 k-mesh. Ag atoms in the first layer are located at the site between Ni atoms of 

the substrate, the preferred binding site for isolated Ag adatoms on this surface. (See the 

Appendix.) The structure of the NiAl(110) surface changes very little when these Ag(110) 

films are added. This feature has been checked for films on a 5-layer NiAl(110) slab with the 

bottom layer fixed.  At the interface, there is still the rumpled NiAl structure similar to that of 

the freestanding NiAl(110) surface mentioned in Sec. I. As the Ag(110) film grows thicker 

(from 1 to 22 layers), the distance between the top-layer Al atom center and its nearest Ag 

atom center decreases from 2.03 Å, converging to 1.99 Å. The interlayer spacing between 

two Ag(110) layers is close to the bulk value of 1.47 Å.  

From an evaluation of the stability of ideal Ag(110) films as a function of thickness, 

DFT provides a rationale for bilayer growth. The quantity that best reflects the stability of the 

film as a function of its thickness in layers, L, is 
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Here, γt, γb, and γi are the free energies of the top surface, bottom surface, and interface, 

respectively. Generally speaking, all three energies are functions of film thickness. EL is the 

total energy including the NiAl substrate, NL is the total number of Ag atoms in the added L-

layer Ag film, Ec is the cohesive energy per atom of bulk fcc Ag, and A is the surface area. 

The subscript “0” corresponds to no Ag layer on the substrate. In our analysis, total energies 

(free energies at zero temperature) are calculated starting with a 5-layer NiAl(110) slab as the 

substrate with the bottom layer fixed, and adding layers of Ag(110). Figure 7(a) shows the 

resulting αL vs. L for the first three bilayers. Oscillations with bilayer period develop and 

persist to thicker films together with some beating (not shown). It is clear that the most stable 

configurations (corresponding to minima in αL) occur when films are 2, 4, and 6 layers thick.  

The quantity αL describes the energetics of an extended surface of an Ag(110) film 

supported on NiAl(110). One should also ask whether the adsorption or binding energy, 

Ea<0, of an individual, isolated Ag atom on perfect Ag(110) films of various thicknesses L 

would oscillate similarly. This would be relevant to the initial stage of formation of each new 

bilayer. The relevant calculations are performed using a (2x3) lateral unit cell with a 6x4x1 

k-mesh. In order to make the computation more efficient, the NiAl substrate is decreased to 4 

layers in contrast to the above calculations, tests showing that this does not affect the basic 

results.  
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Figure 7(b) reveals that the adatom adsorption energy indeed oscillates with a 2-layer 

periodicity. These oscillations persist for thicker films (not shown). Comparing the values at 

the minima and maxima shows that it is significantly more favorable for an adatom to adsorb 

atop the first Ag layer (L=1) than atop the NiAl(110) substrate (L=0). It is significantly more 

favorable to adsorb atop layer L=3 than layer L=2, and to absorb atop layer L=5 than layer 

L=4, etc. This underlies the tendency for bilayer growth. Furthermore, adsorption on higher 

even-numbered layers (corresponding to L=2, 4, 6) is progressively less favorable than on the 

NiAl(110) substrate (the maxima in Fig. 7(b) connected by a dotted line move to higher 

values). This naturally leads each successive level of Ag to wet the surface, in accord with 

the crude surface energy arguments of Sec. II.  

The oscillations in α and Ea are promoted by a quantum size effect (QSE). This effect 

originates from quantum confinement of electrons in the vertical direction within the Ag film 

when the structural dimensions of a film become comparable to the mean free path of 

electrons. More specifically, the stability pattern of a metal film depends on satisfying a 

matching condition involving the Fermi wavelength λF and the film interlayer spacing d.54 If 

λF and d satisfy the condition jd = i λF/2, where j and i are integers, then the film will exhibit 

an oscillating stability with j-layer oscillation when j ≠ i, and no oscillation when j = i. For a 

Ag(110) film, d = 0.145 nm and λF = 0.5228 nm. Then when i = 1,  j =1.8, which is close to 

the integer 2. This indicates that the Ag(110) film has a primary stability oscillation with a 

period of 2 layers, in agreement with the DFT results for the first few layers.  

 The step heights calculated for the Ag(110) bilayers are shown in Table I. At the 

fourth bilayer, the step height has reached the asymptotic limit for thick films, 0.294 nm. For 

the first two levels, theory agrees well with experiment, supporting the interpretation that 
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they are epitaxial Ag(110) bilayers. At and especially beyond the third level, however, there 

develops a significant difference between calculation and experiment. This suggests that 

there is a transition from the QSE-stabilized structure to a different one at higher levels. See 

Sec.III.A. 

 

C. Ripples on the upper surface of the Ag(110) film 

Rather than displaying the “ideal” Ag(110) structure in the first two levels, the upper 

surface of the Ag islands exhibits a lateral structure consisting of linear ripples or stripes. 

Such features also occur in higher levels which do not have Ag(110) structure (as surmised 

above based on their step heights). This ripple or stripe feature is shown in Fig. 8. The stripes 

can be divided into two groups on the basis of their appearance and separation. The first 

types are imaged as depressions, i.e. dark lines, about 0.02 nm deep and either 0.8 or 1.2 nm 

apart. These depressions are illustrated in Fig. 8(a)-(b). The second type appears as 

protrusions, i.e. bright lines, about 0.02-0.05 nm high and separated by 3.3 nm (Fig. 8(d)). 

Between these protrusions, depressions are usually visible. Ripples separated by other 

distances, such as 1.8, 2.3, and 2.6 nm, can also be found, but they are uncommon. The 

ripples develop as a function of increasing film height or level. The depressions appear in the 

first level, but the 3.3-nm protrusions appear only in upper levels. Ripples are aligned across 

island steps, as is obvious in Fig. 8(d)-(e).  

Our DFT analysis of ideal Ag(110) film structures in Sec. III.B used a (1x1) lateral 

unit cell, thus enforcing lateral periodicity and excluding rippling. However, we have also 

performed a less restrictive DFT analysis which indicates that depressions in the first level 

could be due to a slight spontaneous rippling in the fcc(110) bilayer structure, i.e., rippling is 
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not incompatible with and might reasonably be expected for perturbed Ag(110) bilayer 

structures. These additional DFT calculations were performed using (n x 1) supercells, 

placing 2n Ag atoms (to represent the first level islands) on top of a slab of 6 layers of 

NiAl(110) substrate. The first 5 layers of the substrate were allowed to relax.  

For n = 2 (with a period 0.82 nm), a rippled structure with an amplitude of 0.009 nm 

is found. This structure is energetically more favorable than the unrippled one by 2 meV per 

unit cell. With n = 3 and therefore a period of 1.23 nm, a rippling consisting of 2 rows of 

high Ag separated by one row of lower Ag atoms is found. The amplitude is again about 

0.009 nm. The structure is favored by about 0.9 meV per unit cell, over the flat structure. See 

Fig. 9 for side views for n=2 and n=3. With n = 4, aside from a period 0.82 nm rippled 

structure (trivially obtained from two of the above-mentioned n=2 structures), another 

(metastable) structure with 1.64 nm periodicity and even larger ripples can be found. 

However, it is less favored than the flat structure. For the n=2 and n=3 structures, the periods 

of the ripples are in good agreement with those observed experimentally, and the amplitude 

of the rippling agrees to within a factor of 2. One cannot give a simple unambiguous 

identification of the dominant driving force for rippling, but one might note that while the 

lateral mismatch between the substrate and Ag(110) film is small, there is significant strain 

inherent in the different crystal structures of the two materials (bcc-like vs. fcc). 

Of course, one should not expect DFT to reliably predict such small energy 

differences between the unrippled and rippled structures. However, the calculations do show 

that it is plausible for rippled structures to have slightly lower energies. Note that the effect 

on determining film structure of this small energy difference per unit cell is cumulative: for 

Ag films with long islands or rows of atoms, the energy difference between an unrippled and 
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rippled structure per row is the energy difference per atom, times the length of the row. 

Furthermore, since the topological difference between the flat and rippled structures is very 

small, one can argue that there is very little (if any) energy barrier for the transition between 

them, so the system will easily find the rippled structure if it is indeed more energetically 

favorable. The fact that both separations (0.8 and 1.2 nm) are observed in experiment 

indicates that there is a competition between the two, which may be affected by factors such 

as defects or growth history. 

 Since we do not have a detailed model for the structure of the Ag film above the first 

two bilayers, it is more difficult to characterize the 3.3-nm protrusions that appear on higher 

terraces. The amplitude of these ripples seems to increase gradually from the second level to 

the fourth; in the fourth and higher levels, their amplitude is constant at about 0.05 nm. The 

progression with level height is illustrated in Fig. 10, where one of the Ag islands crosses a 

step edge at the arrow. Different levels are labeled numerically. The 3.3-nm protrusions are 

clearly more pronounced on the 4-level Ag islands than on the 3-level island, and least of all 

on the 2-level island. Hence, the development of the 3.3-nm protrusions seems to correlate 

with the decrease in step height (and transition from bilayer to monolayer growth) shown in 

Fig. 4 and Table I. That is to say, in levels 2 to 4, the step height decreases and the 

protrusions develop in parallel. At and above level 4, both features are constant.  

 

D. Other structures of the Ag film 

We should emphasize that for initial Ag film growth on NiAl(110), our DFT 

calculations indicate that there is not a strong energetic driving force preferring the Ag(110) 

structure over all other structures. Indeed, there are a variety of monolayer structures 
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composed of local hexagonal, i.e., Ag(111)-like, and square, i.e., Ag(100)-like, motifs for 

which we find that DFT actually predicts a lower energy per atom than the Ag(110) structure 

(although the energy difference is only ~0.02 eV/atom). However, these structures do not 

match the experimentally measured island or step heights. Assuming that these structures do 

actually have lower energy than Ag(110)-like films (which is unclear given the uncertainty in 

DFT predictions), one must conclude that their formation is kinetically hindered relative to 

that of Ag(110) films. In this regard, we have found that the lowest energy position for a 

single Ag atom adjacent to a complete row of Ag atoms on the substrate is at the bridge site 

between two Ni atoms in the Ag(110) position, rather than in a closer three-fold hollow 

position compatible with alternative denser structures. Thus, it is plausible that nucleation 

and growth the Ag(100) structure is favored, and conversion to another structure is inhibited. 

We have also performed additional DFT analysis to explore specific aspects of the 

stability of Ag(110) bilayer islands. We describe two such analyses here: 

 (i) We have analyzed the single bilayer Ag(110) structure with even larger (nx1) lateral unit 

cells than described in Sec. 3.3. These calculations have revealed that for n > 4, it is 

energetically favorable for the bilayer structure to convert to a structure with a higher density 

of atoms in the first layer than the second layer. However, transition to such a structure from 

a perfect or slightly rippled (with lateral period 0.82 or 1.23 nm) bilayer (110) structure is 

generally activated, perhaps providing a rationale for why these structures are not realized, 

according to our proposed model, for the initial stages of film growth. 

 (ii) We have also performed a DFT analysis to explore the structure of Ag(110) bilayer 

islands of finite width. Here, we found a tendency for atoms in the first layer in a narrow 

island to contract laterally.  This contraction provides the driving force for the above-
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mentioned rippled structures, and potentially for Ag(111)-like domain walls between 

Ag(110) regions. 

Next, we consider the structure of thick films. As indicated above, our STM studies for 

prolonged growth reveal that ultimately, thick Ag films on NiAl(110) appear to develop an 

Ag(111)-like structure. For a 40-layer film grown at 300 K, we find that islands are more 

isotropic compared with the highly elongated islands observed for thin films. The island 

edges are also faceted, with facets frequently displaying the 120o angles expected for an 

Ag(111)-like hexagonal structure. These features are shown clearly in Fig. 11.  

Perhaps the most complicated aspect of growth is the transition from initial Ag(110) 

bilayer growth to the ultimate Ag(111)-like monolayer growth. If the initial growth did have 

an ideal Ag(110) structure, then it would be more difficult to rationalize the transition away 

from this structure given the lack of lateral mismatch in this system. However, we have 

shown in Sec. III.C that the film never has an ideal Ag(110) structure, displaying rippling 

even in the lowest levels. This initial rippling feature and perhaps the effect of substrate 

defects (such as deviations from stoichiometric surface composition, buried dislocations, and 

steps) could all produce perturbations from the ideal Ag(110) structure that might grow with 

film thickness. This could naturally lead to a reduction with increasing film height of the 

barrier to development of non-Ag(110) structures, and thus ultimately lead to the formation 

of the Ag(111)-like structure.  

 

IV. Summary and Discussion 

The main outcome of the present investigation is the finding that Ag films grow in an 

Ag(110) bilayer mode on NiAl(110), at least in the first two levels. The tendency for bilayer 
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growth of these films is promoted by a QSE. The QSE, in turn, reflects a barrier to electron 

propagation at both the Ag-vacuum and Ag-NiAl interfaces.  

Formation of bilayer islands on the nanometer scale has been observed in some other 

metal on metal film growth systems in the initial submonolayer stages of deposition. These 

systems include Ag/Fe(100),55, 56, Co/Cu(111),57, 58 Au/Ag(110),59 and Fe/Cu3Au(001).60 

Several mechanisms have been suggested to drive such bilayer growth including 

magnetostriction effects, a combination of strain and exchange processes, and QSE. A 

surfactant can also force bilayer growth.61 Sometimes there is a barrier to formation of 

bilayer islands which restricts their nucleation to steps, or near to steps, on the surface.56, 58 

One could easily conclude that to be the case here as well if only data at 300 K were 

available, but the 200 K data prove that is not true, in the Ag/NiAl(110) system. Instead, 

preferential nucleation at steps at 300 K here is due to heteroepitaxial step flow, i.e. 

preferential Ag atom capture at existing steps due to rapid diffusion across terraces on the 

time scale of deposition.  

Many other systems have been reported to exhibit QSEs.62, 63 Usually, the film is a low-

melting metal or semimetal, the most common ones being Ag, Cu, Pb, and Bi. Substrates are 

semiconductors (Si, GaAs) and higher-melting elemental metals (Ni, Fe, Co, V). 

Additionally, quasicrystals (a type of intermetallic) can support QSEs.64  Usually these 

substrates have a gap or a pseudogap that serves to confine valence electrons within the film. 

In the present case, the existence of a barrier at the Ag-NiAl interface can be rationalized 

similarly in terms of the small reduction in the electron density of states at the Fermi edge in 

NiAl(110).6  Note also that in the electronic growth model, the period of oscillation depends 
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on the Fermi surface; the 2-layer period observed here is a feature specific to the details of 

the Ag/NiAl(110) system. 

Finally, we reiterate the particularly appealing feature of the Ag/NiAl(110) system which 

both motivated and facilitated this study: the almost perfect lateral match between the 

NiAl(110) substrate and Ag(110) film. As noted above, this allows analysis of heteroepitaxial 

growth in the absence of a strong lateral mismatch strain. However, it also leads to the 

formation of an interface between substrate and film with a simple and natural structure 

amenable to detailed high-level theoretical analysis of the supported films (which is not 

possible for some more complex metal-on-semiconductor or metal-on-quasicrystal systems). 
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APPENDIX: BINDING SITES AND DIFFUSION BARRIERS FOR ISOLATED AG 

ADATOMS ON NIAL(110) 

We have performed a fairly comprehensive DFT evaluation of the potential energy 

surface for the adsorption or binding energy (as a function of lateral position) of an isolated 

Ag adatom on NiAl(110). This analysis shows that the most favorable adsorption site is at the 

bridge site between two nearest-neighbor Ni atoms, as shown in Fig. 1(c). In these 

calculations, the adsorption energy is defined as Ea = Etot – Eslab, where Etot is the total energy 

of the slab plus the adatom, and Eslab is the total energy of the slab without the adatom. In 

calculating Ea, we use a 2×3 supercell with 4×4×1 k mesh. The result is Ea = –2.72 eV for 

this Ni bridge site. The next-most-favorable site is the quasi-threefold site that lies slightly 

off-center from the Al-bridge site, defined by a triangle of Al-Al-Ni, where Ea = -2.52 eV. 

The determination of the Ni-bridge as the favored site for Ag adsorption agrees with the 

experimental result of Wallis et al., derived from atomically-resolved STM.65 Our DFT 

analysis also indicates that the barrier for diffusion of Ag between the Ni bridge sites is about 

0.27 eV (either in the direction parallel or perpendicular to the Ni rows shown in Fig.1(a)). 

It is not immediately clear why the Ni-bridge site should be favored over the Al-bridge 

site.  For fcc(100) surfaces of pure Al and Ni, our DFT calculations show that the adsorption 

energies of Ag adatoms at fourfold hollow sites are essentially identical, i.e. -2.80 eV on Al 

vs. -2.78 eV on Ni. For the (111) faces, Ag actually prefers Al, the binding energy at 

threefold hollow sites being -2.32 eV on Al vs. -2.12 eV on Ni. These calculations use the 

true physical lattice constants for the Ni and Al surfaces. However, if we use a single bulk 

lattice constant (the average of the two, 0.378 nm) to make a comparison that is more 
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relevant to the bimetallic alloy, then on the fcc(100) faces, the binding preference is reversed: 

the binding energy is 0.31 eV lower (more negative) on Ni than on Al. If this difference is 

prorated according to the number of metal atoms at the adsorption site, then on NiAl(110), 

one expects Ag to prefer the Ni-bridge site by about 0.15 eV, close to the value calculated of 

0.20 eV. We therefore suggest that the site preference is very sensitive to the Ni-Ni (or Al-

Al) separation at the alloy surface. 

Finally, we briefly remark on the extension of these DFT analyses to Ag adatom pair 

interactions. Not surprisingly, one finds a much stronger attractive interaction between Ag on 

neighboring Ni bridge sites aligned with the Ni rows rather than orthogonal to these rows. 

This explains the tendency for islands to be strongly elongated in the direction of the Ni 

rows, analogous to the elongation of Ag islands on Ag(110) in the direction of the rows of 

Ag in the top surface layer. 
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Table and Figure Captions. 

Table I.  Heights of majority islands, in nm, in different levels. (Examples of minority, or  

 “anomalous” islands are given in Fig. 6 and described in the text.) When two  

 numbers are given for a single island level from STM data, the top entry is for  

 deposition at 200 K and the bottom for 300 K. Data are provided for both height  

 histogram and line profile analysis. For the line profiles, each entry is based upon at  

 least six profiles. In the DFT calculations, the first-level step heights are derived  

 from the difference between the height of the ion cores of the top Ag atoms, and the  

 average height of the ion cores of the Ni and Al atoms in the top substrate layer. 

Figure 1. (Color online) Depictions of idealized surface structures, using coordinates output  

 from DFT calculations. (a) Clean NiAl(110).  (b) Clean Ag(110).  (c) NiAl(110)  

 with a monolayer of Ag. Ag adopts the Ni-bridge sites, as discussed in the  

 Appendix. (d) NiAl(110) with two layers of Ag(110).  

Figure 2.  STM data for Ag deposited on NiAl(110) at 200 K, as a function of coverage  

 (measured in units of Ag(110) bilayers) shown above the STM images. The top row  

 (a-d) shows STM images of size 100 nm x 100 nm. The middle row (e-h) shows  

 pixel height histograms from a small areas of the surface corresponding to a single  

 terrace of the substrate (and not necessarily from within the image in the top row).  

 Peaks in the histograms are labeled with the island level. The average level is not  

 exactly equal to the total coverage given the transition from bilayer to monolayer  

 growth. The average level height from the histogram also depends strongly on the  

 small area sampled, but not the step heights. The bottom row (i-l) shows  

 representative step profiles for the levels indicated.  



 233

 

Figure 3. STM data for Ag deposited on NiAl(110) at 300 K, with increasing coverage  

 (measured in units of Ag(110) bilayers) shown above the STM images. Top row (a- 

 d) shows STM images of size 100 nm x 100 nm, middle row (e-h) shows pixel  

 height histograms (not necessarily from the image in the top row), and bottom row  

 (i-l) shows representative step profiles for the levels indicated. Peaks in the  

 histograms are labeled with the island level. 

Figure 4. Experimental step heights, from pixel height histograms in STM images. Circles  

 and diamonds show step heights at 200 K and 300 K, respectively, as a function of  

 Ag island level (lower abscissa). Each pair of data points is slightly offset from the  

 exact value of the island level (i.e. offset horizontally), to avoid overlap. Actual  

 values are given in Table I. The horizontal dashed lines show ideal step heights  

 based on interplanar spacings in bulk Ag, for a (110) bilayer (BL) and for various  

 types of monolayers (ML). Triangles show step heights measured as a function of  

 bias voltage (top abscissa) for islands in level 1.  

Figure 5. (a) STM image of Ag deposition on Ag(110) at 220 K. The Ag coverage is 0.3  

 monolayers, image size is 270 nm × 270 nm, scanning current is 0.3 nA, and  

 scanning voltage is +1 V.  (b). Histogram of pixel heights from area b in part (a),  

 encompassing two terrace step edges. (c). Histogram of pixel heights from area c in  

 part (a), encompassing several islands on a single terrace. 

Figure 6.Examples of anomalous islands, indicated by arrows, following deposition of Ag at  

 200 K. These are atop first level islands. In Fig. 6(a), one of these islands bridges  

 two regions with ‘normal’ step heights, illustrating its likely origin as a Ag(110)  
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 monolayer. In each vertical pair, the top frame is the normal constant current image,  

 and the bottom frame is the differentiated version. Each image is 50 nm x 50 nm.  

Figure 7.  (a) DFT calculation of αL as a function of Ag(110) film thickness L. The Ag  

 films are supported by a 5 layer NiAl(110) slab. (b) DFT calculation of  

 adsorption energy Ea as a function of Ag(110) film thickness L. The Ag films  

 are supported by a 4 layer NiAl(110) slab. The dashed line connecting the  

 maxima indicates that the adsorption energy becomes progressively less  

 favorable on higher bilayers.  

Figure 8. Examples of ripples in the Ag islands at various levels. The top row shows images  

 in the constant current mode, which makes depressions distinguishable from  

 protrusions. The bottom row shows images that have been differentiated, which  

 makes the ripples more identifiable. Each image is 23 nm x 23 nm. (a) First level,  

 300 K, depressions with period 1.2 nm.  (b) First level, 300 K, depressions with  

 period 0.8 nm.  (c) First level, 200 K, depressions with both 0.8 and 1.2 nm periods.  

 (d) Third and fourth levels, 300 K, 3.3 nm protrusions, plus depressions. (e) Fifth  

 and sixth levels, 300 K, mixed periods with dislocations. The dislocations form a  

 vertical column in the image. The white arrows point to two examples.  

Figure 9. (Color online) DFT predictions for the rippled structure of an Ag(110) bilayer of  

 periodicity (a) n=2 and (b) n=3. To make the rippling visible, all deviations (of all  

 species, in all directions) from the unrippled bilayer Ag(110) atom positions are  

 magnified by a factor of 10. Open circles are Ag, darkest circles are Ni, and light  

 gray circles are Al.  
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Figure 10. (Color online) Development of protrusion-ripples in levels 2, 3, and 4 of Ag films.  

 At the arrow, the Ag film crosses a NiAl step and consequently the Ag island  

 level increases from 3 to 4. The image size is 51 nm x 51 nm. (a) constant current  

 image (0.5nA, +1 V). (b) differentiated image.  

Figure 11. [(a)-(b)] STM images of a Ag film, about 40 layers thick, on NiAl(110) at 200 K.  

 Several sets of 120o angles are illustrated with the white lines. The images have  

 been differentiated to accentuate the step edges. Each image size is 100 nm x 100  

 nm. 



 

 

        Table 1 

Island Level STM histograms STM line profiles DFT of Ag(110) bilayer 
films on NiAl(110) 

0.324 ±0.010 0.334 ± 0.027 1 
0.317 ± 0.027 0.324 ± 0.027 

0.340 

0.294 ± 0.008 0.292 ± 0.012 2 
0.283 ± 0.005 0.282 ± 0.013 

0.290 

0.265 ± 0.006 0.263 ± 0.017 3 
0.267 ± 0.002 0.254 ± 0.017 

0.295 

0.248 ± 0.008 0.248 ± 0.020 4 
0.236 ± 0.007 0.242 ± 0.018 

0.294 

0.241 ± 0.015 0.237 ± 0.019 5 
0.234 ± 0.009 0.237 ± 0.020 

0.293 

0.239 ± 0.014 0.234 ± 0.018 6 
0.213 ± 0.012 0.233 ± 0.024 

0.294 

0.220 ± 0.010 0.225 ± 0.010 7 
0.212 ± 0.011 0.225 ± 0.013 

0.293 

0.233 ±0.014 0.224 ± 0.017 8 –– –– 0.294 

0.221 ± 0.009 0.215 ± 0.020 9 
–– –– 

0.292 
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GENERAL CONCLUSIONS 
 

The present work in this dissertation mainly focuses on the clean fivefold surfaces of 

i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. 

In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. 

First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn 

quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning 

tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some 

terraces while the others were almost void-free. After annealing at 925-950K, void-rich 

terraces became much rarer. Our STM images suggest that through growth and coalescence 

of the voids, a different termination becomes exposed on host terraces. All of these 

observations in our study indicate that even after the quasicrystalline terrace-step structure 

appears, it evolves with time and temperature. More specifically, based on the STM 

observations, we conclude that during the annealing a wide range of energetically similar 

layers nucleate as surface terminations, however, with increasing temperature (and time) this 

distribution gets narrower via elimination of the metastable void-rich terraces.  

Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn 

quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold 

planes that might represent physical surface terminations. In our analyses, we mainly have 

focused on four deterministic models which have no partial or mixed occupancy but we have 

made some comparisons with an undeterministic model. We have compared the models with 

each other and also with the available experimental data including STM, LEED-IV, XPD and 

LEIS. In all deterministic models, there are two different families of layers (a pair of planes), 
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and the nondeterministic model contains similar group of planes. These two families differ in 

terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) 

and Pd-(without Pd). Based on their planer structure and the step height, it can be said that 

these two families can be viable surface terminations. However, besides the Pd content, these 

two sets differ in terms of relative densities of their top planes as well as the gap separating 

the layer from the nearest atomic plane. The experimental data and other arguments lead to 

the conclusion that the Pd- family is favored over the Pd+.  This has an important implication 

on the interpretation of local motifs seen in the high resolution STM images. In other words, 

the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.  

Our detailed analysis shows that the dense planes are very similar in all the models 

with respect to their atomic densities, average chemical composition and positions along the 

five fold axis. Our analysis also shows that previously identified local motifs such as dark 

stars, white flowers, rings etc in the Pd+ layers do exist in the Pd- layers of all the available 

models for i-Al-Pd-Mn quasicrystals. However, the chemical decoration of the local motifs 

namely, dark stars and white flowers, are model dependent. Therefore, these features may be 

used to identify which bulk structural model describes real quasicrystal structure best.   

Third, we have investigated the nucleation and growth of Ag islands on fivefold 

surface of i-Al-Pd-Mn quasicrystal. We observed that the island density is constant from 127 

K to 300 K but it decreases as temperature increases beyond 300K. To model this behavior, 

we have developed a mean field rate equation model which takes into account the enhanced 

nucleation at traps relative to nucleation at regular terrace sites. The best fit to the model 

suggest that the critical sizes for the nucleation at both sites are large, especially, at traps 

where 6 Ag atoms from stable clusters, and that binding between Ag atoms at traps is 
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stronger than at regular terrace sites. In addition, the potential energy surface for single Ag 

adatom suggests that the dark star sites are the strongest binding sites and hence they are the 

traps for the Ag adatoms.  

We have also studied the growth of Ag films on fivefold i-Al-Pd-Mn surface at 365K. 

We have observed that at this deposition temperature, most of the Ag segregates into 

steeped-edge, flat- top, three-layer-high islands. This growth mode (i.e. height selection) 

signals the quantum size effect (QSE). We have developed and applied a step dynamics 

formulation to provide, for the first time, a characterization of the development of 3D islands 

and their height selection for a system exhibiting QSE. From the model, we have concluded 

that transition from 2D to 3D islands is facilitated by strain build-up as the islands grow, and 

enhanced step binding in higher layers due to the relaxation of the film to fcc type (the 

natural structure of Ag). The height selection is driven by QSE which facilitate nucleation of 

3rd layer and inhibits the nucleation of 4th layer. 

Finally, we have reported our investigation of Ag growth on NiAl(110) surface at 

200K and 300K. In this system, we have observed that Ag films grow in a Ag(110) bilayer 

mode on NiAl(110), at least in the first two layers. Our density functional theory analysis of 

supported Ag films with ideal fcc(110) structure on NiAl(110) suggests that the bilayer 

growth Ag films are promoted by QSE effects.  On the other hand, even if there is an almost 

perfect lateral match between the NiAl(110) and Ag(110) lattice constants, the growth of Ag 

films are not perfect. Indeed, our STM studies have showed that ripple structure exists even 

on top of the first bilayer islands and also as coverage increases there is a deviation from 

Ag(110)-like bilayer growth to Ag(111)-like monolayer growth.  
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Figure 5. Schematic depiction of atomic planes in the PK model. The z-axis is the 5-fold axis. 

The spatial coordinate is labeled  “(z)” because this is the notation used by the 

authors of the model.The height of each line is proportional to the planar atomic 

density. Within each vertical bar, black is Al, green is Pd, and red is Mn. The light 

rectangle encloses a triplet.  

Figure 6. Schematic depiction of atomic planes in the QG model. The x-axis is the 5-fold 

axis. The spatial coordinate is labeled  “(x)” because this is the notation used by the 

authors of the model. The height of each line is proportional to the planar atomic 

density. Within each vertical bar, black is Al, green is Pd, and red is Mn. The light 

rectangle encloses a triplet.  

Figure 7. Schematic depiction of atomic planes in the Boudard model. The z-axis is the 5-fold 

axis. The spatial coordinate is labeled  “(z)” because this is the notation used by the 

authors of the model.The height of each line is proportional to the planar atomic 

density. Within each vertical bar, black is Al, green is Pd, and red is Mn. The light 

rectangle encloses a triplet.  
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Table V. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the KG model. In the KG model, a layer is a pair of planes.  
 

Set A in KG Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

10.71 Al(100.00) 9.12 

10.66 Al(49.02), Pd(48.53), Mn(2.45) 5.04 
Al(81.33), Pd(17.77), Mn(0.90) 14.16 

10.30 Al(100.00) 6.74 

10.26 Al(44.86), Pd(18.86), Mn(36.28) 7.37 
Al(71.02), Pd(9.91), Mn(19.07) 14.11 

9.64 Al(100.00) 8.80 

9.60 Al(23.62), Pd(69.58) , Mn(6.80) 5.29 
Al(71.32), Pd(26.13), Mn(2.55) 14.10 

9.24 Al(100.00) 4.76 

9.19 Al(35.05), Pd(36.77), Mn(28.18) 8.86 
Al(57.29), Pd(24.18), 

Mn(18.53) 13.63 

8.58 Al(100.00) 7.74 

8.53 Al(29.21), Pd(39.33) , Mn(31.46) 6.44 
Al(68.02), Pd(17.77), 

Mn(14.21) 14.18 

7.92 Al(100.00) 9.01 

7.87 Al(32.70), Pd(61.62) , Mn(5.68) 5.07 
Al(76.15), Pd(22.84), Mn(2.01) 14.08 

7.51 Al(100.00) 6.11 

7.46 Al(37.05), Pd(29.18) , Mn(33.77) 7.92 
Al(64.01), Pd(16.68), 

Mn(19.31) 14.03 

6.85 Al(100.00) 8.38 

6.80 Al(36.67), Pd(55.26) , Mn(8.07) 5.53 
Al(75.26), Pd(21.59), Mn(3.15) 13.91 

6.19 Al(100.00) 8.99 

6.14 Al(50.60), Pd(48.80) , Mn(0.60) 4.79 
Al(83.40), Pd(16.40), Mn(0.20) 13.78 

5.78 Al(100.00) 6.86 

5.73 Al(41.54), Pd(23.38) , Mn(35.08) 7.15 
Al(70.89), Pd(11.64), 

Mn(17.47) 14.01 

5.12 Al(100.00) 8.88 

5.07 Al(25.55), Pd(67.91) , Mn(6.54) 5.32 
Al(72.69), Pd(24.91), Mn(2.40) 14.20 

4.71 Al(100.00) 5.12 

4.66 Al(32.56), Pd(35.71) , Mn(31.73) 8.56 
Al(58.04), Pd(22.22), 

Mn(19.74) 13.68 

4.05 Al(100.00) 7.87 

4.00 Al(39.49), Pd(39.13) Mn(21.38) 6.42 
Al(73.41), Pd(17.20), Mn(9.39) 14.30 
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Table VI. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the KG model. In the KG model, a layer is a pair of planes.  
 

Set B in KG Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

3.80 Al(100.00) 9.12 

3.85 Al(48.04), Pd(48.53), Mn(3.43) 4.93 
Al(80.97), Pd(17.77), Mn(1.26) 14.05 

4.21 Al(100.00) 6.70 

4.26 Al(42.61), Pd(20.45) Mn(36.94) 7.41 
Al(69.67), Pd(10.81), Mn(19.52) 14.11 

4.87 Al(100.00) 8.77 

4.92 Al(25.72), Pd(66.56) , Mn(7.72) 5.44 
Al(71.93), Pd(25.15), Mn(2.92) 14.21 

5.27 Al(100.00) 4.60 

5.32 Al(34.70), Pd(38.63), Mn(26.67)  8.91 
Al(56.49), Pd(25.74), Mn(17.77) 13.51 

5.93 Al(100.00) 7.60 

5.98 Al(30.79), Pd(37.77) , Mn(31.44) 6.46 
Al(67.91), Pd(17.51), Mn(14.58) 14.06 

6.60 Al(100.00) 8.82 

6.65 Al(30.56), Pd(63.54) , Mn(5.90) 5.26 
Al(75.22), Pd(22.68), Mn(2.11) 14.09 

7.00 Al(100.00) 5.94 

7.05 Al(35.82), Pd(30.47) , Mn(33.71) 8.02 
Al(62.68), Pd(17.72), Mn(19.60) 13.95 

7.66 Al(100.00) 8.26 

7.71 Al(38.07), Pd(53.98) , Mn(7.95) 5.86 
Al(75.38), Pd(21.46), Mn(3.16) 14.12 

8.32 Al(100.00) 8.99 

8.37 Al(50.44), Pd(48.97) , Mn(0.59) 4.86 
Al(83.18), Pd(16.62), Mn(0.20) 13.85 

8.73 Al(100.00) 6.72 

8.78 Al(42.65), Pd(21.43) , Mn(35.92) 7.31 
Al(70.82), Pd(10.90), Mn(18.28) 14.03 

9.39 Al(100.00) 8.82 

9.44 Al(23.84), Pd(68.73),Mn(7.43) 5.18 
Al(71.82), Pd(25.43), Mn(2.75) 14.00 

9.80 Al(100.00) 5.12 

9.85 Al(33.12), Pd(36.67), Mn(30.21) 8.89 
Al(57.92), Pd(23.07), Mn(19.00) 14.08 

10.46 Al(100.00) 7.87 

10.51 Al(34.78), Pd(39.13), Mn(26.09)  6.17 
Al(71.34), Pd(17.20), Mn(11.47) 14.05 
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Table VII. Compositions  and densities of layers in the Pd- and Pd+ types of terminations in 
Yamamoto model. In the Yamamoto model, a layer is a group of planes as defined in Sec. VI 
and Fig. 4.  

Set A in Yamamoto Model 
 (Pd– viewed from positive Z  to negative Z or Pd+ viewed from negative Z  to positive Z ) 

Location (nm) Composition 
(at.%) 

Total density of 
the terminations (Atoms 

/nm2) 
4.89–4.81(Al) 
4.86–4.80(Pd) 
4.86–4.81(Mn) 

Al(83.42), Pd(8.89), Mn(7.69) 11.57 

4.47–4.38(Al)  
4.43–4.39(Pd) 
4.45–4.39(Mn) 

Al(73.88), Pd(23.37), Mn(2.75) 12.35 

3.81–3.69(Al) 
3.75–3.73(Pd) 
3.79–3.73(Mn) 

Al(77.75), Pd(14.48), Mn(7.77) 12.89 

3.16–3.08(Al)  
3.13–3.08(Pd) 
3.13–3.07(Mn) 

Al(89.75), Pd(2.69), Mn(7.56) 11.60 

2.74–2.65(Al)  
2.67–2.66(Pd) 
2.72–2.66(Mn) 

Al(76.57), Pd(17.68), Mn(5.75) 11.44 

2.09–1.97(Al)  
2.02–2.00(Pd) 
2.06–2.01(Mn) 

Al(77.77), Pd(13.81), Mn(8.42) 12.56 

1.67–1.58(Al)  
1.63–1.60(Pd) 
1.66–1.55(Mn) 

Al(75.22), Pd(20.91), Mn(3.87) 12.77 

1.02–0.93(Al) 
 0.95–0.93(Pd) 
0.99–0.93(Mn) 

Al(75.55), Pd(16.76), Mn(7.69) 12.08 

0.36–0.28 (Al)  
0.33–0.27(Pd) 

0.36–0.28 (Mn) 
Al(86.34), Pd(5.86), Mn(7.81) 11.98 
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Table VIII. Compositions  and densities of layers in the Pd- and Pd+ types of terminations in 
Yamamoto model. In the Yamamoto model, a layer is a group of planes as defined in Sec. VI 
and Fig. 4.  

Set B in Yamamoto Model 
 (Pd– viewed from positive Z  to negative Z or Pd+ viewed from negative Z  to positive Z ) 

Location (nm) Composition 
(at.%) 

Total density of 
the terminations (Atoms 

/nm2) 
0.06–0.15(Al) 
0.10–0.14(Pd) 
0.07–0.14(Mn) 

Al(77.40), Pd(20.14), Mn(2.46) 13.54 

0.71–0.80(Al) 
0.78–0.80(Pd) 
0.74–0.80(Mn) 

Al(77.61), Pd(13.53), Mn(8.86) 12.71 

1.37–1.44(Al) 
1.40–1.44(Pd) 
1.39–1.45(Mn) 

Al(89.51), Pd(3.34), Mn(7.15) 11.99 

1.79–1.88(Al) 
1.86–1.87(Pd) 
1.80–1.87(Mn) 

Al(72.56), Pd(21.95), Mn(5.49) 13.02 

2.43–2.53(Al) 
2.51–2.52(Pd) 
2.46–2.51(Mn) 

Al(78.07), Pd(13.28), Mn(8.65) 12.52 

2.86–2.94(Al) 
2.90–2.93(Pd) 
2.87–2.93(Mn) 

Al(75.80), Pd(20.48), Mn(3.72) 13.08 

3.51–3.60(Al) 
3.57–3.60(Pd) 
3.53–3.59(Mn) 

Al(75.96), Pd(16.56), Mn(7.48) 12.62 

4.16–4.24(Al) 
4.20–4.25(Pd) 
4.19–4.25(Mn) 

Al(85.63), Pd(6.49), Mn(7.88) 11.94 

4.58–4.67 (Al) 
4.65–4.66(Pd) 
4.60–4.66(Mn) 

Al(75.79), Pd(21.09), Mn(3.12) 13.48 
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Table IX. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the PK model. In the PK model, a layer is a pair of planes. 
 

Set A in PK Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

4.80 Al(97.35), Mn(2.65) 8.17 

4.75 Al(31.09), Pd(68.35),Mn(0.56) 5.78 
Al(70.64), Pd(25.55), Mn(1.81) 13.94 

4.14 Al(87.95), Mn(12.05) 8.90 

4.09 Al(69.48), Pd(30.52) 2.52 
Al(81.51), Pd(10.64), M(7.85) 13.61 

3.73 Al(100) 6.98 

3.68 Al(41.81), Pd(48.28), Mn(9.91) 7.18 
Al(69.80), Pd(25.06), Mn(5.15) 14.15 

3.07 Al(91.70),Mn(8.30) 8.60 

3.02 Al(60.47), Pd(39.53) 5.32 
Al(79.84), Pd(15.01), Mn(5.15) 13.92 

2.66 Al(100.00) 4.78 

2.61 Al(46.12), Pd(39.63), Mn(14.25) 8.80 
Al(64.72), Pd(25.95), Mn(9.33) 13.58 

2.00 Al(99.33), Mn(0.67) 7.71 

1.95 Al(29.24), Pd(67.44),Mn(3.32) 6.21 
Al(68.07), Pd(30.08), Mn(1.85) 13.92 

1.34 Al(90.95), Mn(0.05) 8.82 

1.29 Al(64.10), Pd(35.90) 5.09 
Al(81.02), Pd(13.28), Mn(5.70) 13.90 

0.93 Al(100.00) 5.79 

0.88 Al(49.34), Pd(37.27),Mn(13.39) 8.00 
Al(70.82), Pd(21.47), Mn(7.71) 13.79 

0.27 Al(94.20), Mn(5.80) 8.18 

0.22 Al(45.50), Pd(54.50) 5.67 
Al(74.13), Pd(22.46), Mn(3.41) 13.85 

-0.39 Al(87.91), Mn(12.09) 8.86 

-0.44 Al(74.15), Pd(25.85) 4.83 
Al(83.06), Pd(9.11), Mn(7.83) 13.69 

-0.80 Al(100.00) 6.87 

-0.85 Al(42.08), Pd(50.29),Mn(7.63) 7.03 
Al(70.85), Pd(25.31), Mn(3.84) 13.90 
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Table IX. Continued…Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the PK model. In the PK model, a layer is a pair of planes. 
 
 

Set A in PK Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

-1.46 Al(90.69), Mn(9.31) 8.64 

-1.50 Al(64.33), Pd(35.67) 5.40 
Al(88.85), Pd(13.31), Mn(5.83) 14.04 

-1.86 Al(100.00) 4.98 

-1.91 Al(46.64), Pd(38.73), Mn(14.63) 8.60 
Al(66.21), Pd(24.53), Mn(9.26) 13.58 

-2.52 Al(97.83), Mn(2.17) 7.76 

-2.57 Al(32.59), Pd(66.55),Mn(0.86) 6.04 
Al(68.98), Pd(29.43), Mn(1.59) 13.80 

-3.18 Al(90.43), Mn(9.57) 8.85 

-3.23 Al(65.28), Pd(34.72) 4.96 
Al(81.45), Pd(12.39), Mn(6.16) 13.81 

-3.59 Al(100.00) 6.50 

-3.64 Al(48.84), Pd(40.11), Mn(11.05) 7.48 
Al(72.30), Pd(21.71), Mn(5.98) 13.88 

-4.25 Al(91.71), Mn(8.29) 8.46 

-4.30 Al(58.30), Pd(41.70) 5.47 
Al(78.59), Pd(16.37), Mn(5.04) 13.92 
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Table X. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the PK model. In the PK model, a layer is a pair of planes. 
 

Set B in PK Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

-4.50 Al(90.59), Mn(9.41) 8.77 

-4.46 Al(66.33), Pd(33.67) 5.30 
Al(81.72), Pd(12.31), 

Mn(5.97) 14.07 

-4.10 Al(100.00) 4.83 

-4.05 Al(49.65), Pd(36.38), Mn(13.97) 8.79 
Al(67.62), Pd(23.40), 

Mn(8.98) 13.61 

-3.44 Al(98.67), Mn(1.33) 8.01 

-3.39 Al(26.11), Pd(72.82), Mn(1.07) 5.81 
Al(67.65), Pd(31.13), 

Mn(1.21) 13.81 

-2.78 Al(89.64),Mn(10.36) 8.96 

-2.73 Al(65.60), Pd(34.40) 4.77 
Al(81.23), Pd(12.04), 

Mn(6.73) 13.73 

-2.37 Al(100.00) 6.43 

-2.32 Al(45.24), Pd(44.16), Mn(10.60) 7.59 
Al(70.35), Pd(23.91), 

Mn(5.74) 14.02 

-1.71 Al(92.91), Mn(7.09) 8.49 

-1.66 Al(53.73), Pd(46.27) 5.39 
Al(77.79), Pd(17.86), 

Mn(4.35) 13.88 

-1.05 Al(82.88), Mn(17.12) 8.83 

-1.00 Al(87.79), Pd(12.21) 4.48 
Al(84.55), Pd(4.16), 

Mn(11.29) 13.31 

-0.64 Al(99.87), Mn(0.13) 7.67 

-0.59 Al(28.77), Pd(65.92),Mn(5.31) 6.20 
Al(68.60), Pd(28.99), 

Mn(2.41) 13.87 

0.02 Al(90.78), Mn(9.22) 8.95 

0.07 Al(63.56), Pd(36.44) 4.98 
Al(81.05), Pd(13.03), 

Mn(5.92) 13.93 

0.43 Al(100.00) 5.62 

0.48 Al(48.70), Pd(38.91), Mn(12.39) 8.32 
Al(68.80), Pd(23.66), 

Mn(7.54) 13.95 

1.09 Al(96.00),Mn(4.00) 8.24 

1.14 Al(38.17), Pd(61.83) 5.56 
Al(72.54), Pd(25.07), 

Mn(2.39) 13.80 
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Table X. Continued…Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the PK model. In the PK model, a layer is a pair of planes. 
 

Set B in PK Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

1.75 Al(88.54),Mn(11.46) 8.91 

1.80 Al(72.16), Pd(27.84) 4.86 
Al(82.94), Pd(9.52), Mn(7.54) 13.77 

2.16 Al(100.00) 6.74 

2.20 Al(42.53), Pd(48.13), Mn(9.34) 7.18 
Al(70.52), Pd(24.69), Mn(4.79) 13.92 

2.82 Al(91.53), Mn(8.47) 8.43 

2.86 Al(61.30), Pd(38.70) 5.38 
Al(79.62), Pd(15.25), Mn(5.13) 13.82 

3.22 Al(100.00) 4.67 

3.27 Al(45.25), Pd(40.43), Mn(14.32) 8.73 
Al(64.56), Pd(26.17), Mn(9.27) 13.40 

3.88 Al(99.19), Mn(0.81) 7.62 

3.93 Al(31.92), Pd(66.61), Mn(1.47) 6.31 
Al(68.66), Pd(30.23), Mn(1.11) 13.93 

4.54 Al(90.88), Mn(9.12) 8.83 

4.59 Al(64.14), Pd(35.86) 5.03 
Al(81.24), Pd(12.92), Mn(5.83) 13.87 
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Table XI. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the QG model. In the QG model, a layer is a pair of planes. 

Set A in QG Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density 
of 
the 

terminations 
(Atoms /nm2) 

25.57 Al(100.00)  4.73 

25.93 Al(57.33), Pd(42.67) 8.72 
Al(72.19), Pd(27.81) 13.45 

24.91 Al(95.61), Mn(7.39) 7.69 

24.87 Al(46.23), Pd(53.77) 6.09 
Al(71.88), Pd(24.03), Mn(4.09) 13.78 

24.25 Al(71.22), Mn(28.78) 8.95 

24.20 Al(61.58), Pd(38.42) 4.94 
Al(67.79), Pd(13.67), Mn(18.54) 13.89 

23.85 Al(96.41), Mn(3.59) 5.94 

23.80 Al(38.56), Pd(61.44) 7.68 
Al(63.38), Pd(35.08), Mn(1.54) 13.63 

23.19 Al(81.75), Mn(18.25) 8.31 

23.14 Al(64.47), Pd(35.53) 5.34 
Al(74.98), Pd(13.90), Mn(11.11) 13.65 

22.52 Al(73.20), Mn(26.80) 8.81 

22.48 Al(82.23), Pd(17.77) 4.56 
Al(76.27), Pd(6.04), Mn(17.69) 13.37 

22.12 Al(93.93), Mn(6.07) 6.99 

22.07 Al(41.98), Pd(58.02) 6.71 
Al(68.68), Pd(28.20), Mn(3.12) 13.70 

21.46 Al(71.00), Mn(29.00) 8.67 

21.41 Al(75.73), Pd(24.27) 5.20 
Al(72.74), Pd(8.93), Mn(18.33) 13.86 

21.05 Al(99.34), Mn(0.66) 5.16 

21.00 Al(51.23), Pd(48.77) 8.24 
Al(69.75), Pd(29.99), Mn(0.26) 13.40 

20.39 Al(91.79), Mn(8.21) 7.76 

20.34 Al(44.81), Pd(55.19) 5.85 
Al(71.60), Pd(23.72), Mn(4.68) 13.60 

19.73 Al(71.88), Mn(28.12) 8.82 

19.68 Al(71.09), Pd(28.91) 4.76 
Al(1.61), Pd(10.10), Mn(18.29) 13.58 

19.32 Al (95.11), Pd(4.89) 6.20 

19.72 Al(34.95), Pd(65.05) 7.47 
Al(62.33), Pd(35.45), Mn(2.22) 13.67 

18.66 Al(75.69), Mn(24.31) 8.50 

18.61 Al(76.24), Pd(23.76) 5.23 
Al(75.90), Pd(8.98), Mn(15.12) 13.73 

18.00 Al(74.87), Mn(25.13) 8.81 

17.95 Al(82.67), Pd(17.33) 4.34 
Al(77.43), Pd(5.69), Mn(16.88) 13.16 
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Table XI. Continued… Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the QG model. In the QG model, a layer is a pair of planes. 

Set A in QG Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density 
of 
the 

terminations 
(Atoms /nm2) 

17.59 Al(93.56), Mn(6.44) 7.22 

17.54 Al(43.03), Pd(56.97) 6.40 
Al(69.83), Pd(26.75), Mn(2.42) 13.62 

16.93 Al(70.82), Mn(29.18) 8.76 

16.88 Al(68.31), Pd(31.69) 4.92 
Al(69.92), Pd(11.36), Mn(18.72) 13.68 

16.52 Al(97.93), Mn(2.07) 5.61 

16.48 Al(43.96), Pd(56.04) 7.98 
Al(66.24), Pd(32.91), Mn(0.85) 13.59 

15.86 Al(86.44), Mn(13.56) 8.07 

15.82 Al(55.01), Pd(44.99) 5.59 
Al(73.74), Pd(18.18), Mn(8.08) 13.67 

15.20 Al(72.94), Mn(27.06) 8.86 

15.16 Al(76.75), Pd(23.25) 4.61 
Al(74.25), Pd(7.96), Mn(17.79) 13.48 

14.80 Al(94.28), Mn(5.72) 6.62 

14.75 Al(38.63), Pd(61.37) 6.99 
Al(65.64), Pd(31.58), Mn(2.78) 13.61 

14.14 Al(72.38), Mn(27.62) 8.55 

14.09 Al(78.69), Pd(21.31) 5.04 
Al(74.72), Pd(7.90), Mn(17.38) 13.59 

13.73 Al (100.00) 4.80 

13.68 Al(56.53), Pd(43.47) 8.52 
Al(72.10), Pd(27.90) 13.32 

13.07 Al(93.41), Mn(6.59) 7.57 

13.02 Al(44.21), Pd(55.79) 5.91 
Al(71.84), Pd(24.46), Mn(3.70) 13.48 

12.41 Al(72.24), Mn(27.76) 8.69 

12.36 Al(61.09), Pd(38.91) 4.83 
Al(68.32), Pd(13.70), Mn(17.98) 13.52 

12.00 Al(95.79), Mn(4.21) 5.98 

11.95 Al(39.34), Pd(60.66) 7.68 
Al(64.57), Pd(33.55), Mn(1.88) 13.66 

11.34 Al (79.16), Mn(20.84) 8.29 

11.29 Al(69.18), Pd(30.82) 5.32 
Al(75.30), Pd(11.92), Mn(12.78) 13.62 

10.68 Al(75.39), Mn(24.61) 8.79 

10.63 Al(82.13), Pd(17.87) 4.51 
Al(77.63), Pd(5.96), Mn(16.40) 13.31 

10.27 Al(93.17), Mn(6.83) 7.35 

10.22 Al(45.07), Pd(54.93) 6.42 
Al(70.85), Pd(25.49), Mn(3.66) 13.77 
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Table XI. Continued… Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the QG model. In the QG model, a layer is a pair of planes. 
 

Set A in Q–G Model   
(Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

9.61 Al(96.12), Mn(30.88) 8.79 

9.56 Al(7.60), Pd(23.96) 4.98 
Al(71.62), Pd(8.67), Mn(19.71) 13.77 

9.20 Al(99.21), Mn(0.79) 5.49 

9.15 Al(46.74), Pd(53.26) 8.22 
Al(72.98), Pd(26.63), Mn(0.39) 13.71 

8.54 Al(91.54), Mn(8.46) 7.98 

8.49 Al(49.10), Pd(50.90) 5.51 
Al(74.57), Pd(20.35), Mn(5.08) 13.48 

7.88 Al(70.30), Mn(29.70) 8.91 

7.83 Al(74.84), Pd(25.16) 4.68 
Al(71.85), Pd(8.59), Mn(19.55) 13.59 

7.47 Al(93.56), Mn(6.44) 6.74 

7.43 Al(39.72), Pd(60.28) 7.11 
Al(65.93), Pd(30.94), Mn(3.13) 13.85 
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Table XII. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the QG model. In the QG model, a layer is a pair of planes. 

Set B in QG Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density of 
the terminations 
(Atoms /nm2) 

6.97 Al(100.00) 4.89 

7.02 Al(46.93), Pd(53.07) 8.56 
Al(66.90), Pd(33.10) 13.45 

7.63 Al(91.96), Mn(8.04) 7.69 

7.68 Al(46.93), Pd(53.07) 6.17 
Al(71.83), Pd(23.72), Mn(4.45) 13.86 

8.29 Al(71.80), Mn(28.20) 8.95 

8.34 Al(63.26), Pd(36.74) 4.94 
Al(68.76), Pd(13.07), 

Mn(18.16) 13.89 

8.70 Al(95.69), Mn(4.31) 6.04 

8.75 Al(36.18), Pd(63.82) 7.59 
Al(62.12), Pd(36.00), Mn(1.88) 13.63 

9.36 Al(78.29), Mn(21.71) 8.31 

9.41 Al(69.84), Pd(30.16) 5.34 
Al(74.98), Pd(11.80), 

Mn(13.21) 13.65 

10.02 Al(73.20), Mn(26.80) 8.81 

10.07 Al(82.23), Pd(17.77) 4.56 
Al(76.27), Pd(6.04), Mn(17.69) 13.37 

10.43 Al(93.43), Mn(6.57) 6.99 

10.47 Al(43.11), Pd(56.89) 6.65 
Al(69.07), Pd(27.54), Mn(3.39) 13.64 

10.09 Al(70.28), Mn(29.72) 8.73 

11.13 Al(73.36), Pd(26.64) 4.96 
Al(71.39), Pd(9.65), Mn(18.95) 13.70 

11.49 Al(98.29), Mn(1.71) 5.47 

11.54 Al(48.63), Pd(51.37) 8.05 
Al(68.72), Pd(30.59), Mn(0.69) 13.53 

12.15 Al(88.69), Mn(11.31) 8.01 

12.20 Al(51.45), Pd(48.55) 5.61 
Al(73.35), Pd(20.00), Mn(6.65) 13.62 

12.82 Al(71.88), Mn(28.12) 8.82 

12.86 Al(76.28), Pd(23.72) 4.63 
Al(73.39), Pd(8.14), Mn(18.46) 13.45 

13.22 Al(93.91), Mn(6.09) 6.56 

13.27 Al(38.91), Pd(61.09) 7.13 
Al(65.33), Pd(31.75), Mn(2.93) 13.69 

13.88 Al(71.42), Mn(28.58) 8.67 

13.93 Al(79.41), Pd(20.59) 5.12 
Al(74.37), Pd(7.58), Mn(18.05) 13.80 

14.29 Al(100.00) 4.59 

14.34 Al(53.90), Pd(46.10) 8.70 
Al(69.66), Pd(30.34) 13.29 
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Table XII. Continued…Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the QG model. In the QG model, a layer is a pair of planes. 

Set B in QG Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density 
of 
the 

terminations 
(Atoms /nm2) 

14.95 Al(93.83), Mn(6.17) 7.62 

15.00 Al(42.73), Pd(57.27) 5.96 
Al(71.42), Pd(25.12), Mn(3.46) 13.58 

15.61 Al(71.59), Mn(28.41) 8.82 

15.66 Al(63.95), Pd(36.05) 4.79 
Al(68.91), Pd(12.64), Mn(18.45) 13.61 

15.61 Al(71.59), Mn(28.41) 8.82 

15.66 Al(63.95), Pd(36.05) 4.79 
Al(68.91), Pd(12.64), Mn(18.45) 13.61 

16.02 Al(96.97), Mn(3.03) 5.97 

16.07 Al(41.00), Pd(59.00) 7.75 
Al(65.35), Pd(33.33), Mn(1.32) 13.72 

16.68 Al(83.10), Mn(16.90) 8.35 

16.73 Al(63.36), Pd(36.64) 5.33 
Al(75.51), Pd(14.10), Mn(10.40) 13.68 

17.34 Al(73.62), Mn(26.38) 8.86 

17.39 Al(80.29), Pd(19.71) 4.46 
Al(75.85), Pd(6.60), Mn(17.55) 13.32 

17.75 Al(93.51), Mn(6.49) 7.04 

17.80 Al(42.72), Pd(57.28) 6.56 
Al(68.94), Pd(27.71), Mn(3.35) 13.60 

18.41 Al(69.35), Mn(30.65) 8.70 

18.46 Al(78.40), Pd(21.60) 5.01 
Al(72.63), Pd(7.83), Mn(19.54) 13.71 

18.82 Al(99.73), Mn(0.27) 5.12 

18.86 Al(48.78), Pd(51.22) 8.36 
Al(68.04), Pd(31.85), Mn(0.10) 13.48 

19.48 Al(92.80), Mn(7.20) 7.889 

19.52 Al(44.96), Pd(55.04) 5.58 
Al(72.98), Pd(22.80), Mn(4.22) 13.46 

20.14 Al(72.29), Mn(27.71) 8.70 

20.18 Al(67.08), Pd(32.92) 4.72 
Al(70.48), Pd(11.42), Mn(18.10) 13.43 

20.54 Al(94.84), Mn(5.16) 6.31 

20.59 Al(38.21), Pd(61.79) 7.43 
Al(64.71), Pd(32.87), Mn(2.42) 13.74 

21.20 Al(75.67), Mn(24.33) 8.47 

21.25 Al(74.30), Pd(25.70) 5.20 
Al(75.16), Pd(9.66), Mn(15.18) 13.66 

21.86 Al(76.93), Mn(23.07) 8.79 

21.91 Al(80.67), Pd(19.33) 4.44 
Al(78.17), Pd(6.38), Mn(15.45) 13.24 
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Table XII. Continued…Compositions  and densities of individual planes and layers in the Pd- 
and Pd+ types of terminations in the QG model. In the QG model, a layer is a pair of planes. 
 

Set B in QG Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density 
of 
the 

terminations 
(Atoms /nm2) 

22.27 Al(93.17), Mn(6.83) 7.35 

22.32 Al(44.51), Pd(55.49) 6.42 
Al(70.59), Pd(25.75), Mn(3.66) 13.77 

22.93 Al(69.75), Mn(30.25) 8.79 

22.98 Al(70.46), Pd(29.54) 4.98 
Al(70.01), Pd(10.69), Mn(19.30) 13.77 

23.34 Al(98.46), Mn(1.54) 5.62 

23.39 Al(44.06), Pd(55.94) 7.96 
Al(66.37), Pd(33.00), Mn(0.63 13.58 

24.00 Al(88.54), Mn(11.46) 7.98 

24.49 Al(53.60), Pd(46.40) 5.51 
Al(74.57), Pd(18.55), Mn(6.88) 13.48 

24.66 Al(70.63), Mn(29.37) 8.91 

24.71 Al(79.12), Pd(20.88) 4.68 
Al(73.53), Pd(7.13), Mn(19.34) 13.59 

25.07 Al(92.84), Mn(7.16) 6.81 

25.12 Al(41.99), Pd(58.01) 7.04 
Al(66.99), Pd(29.49), Mn(3.52) 13.85 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 266

Table XIII. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the Boudard model. In the Boudard model, a layer is a pair of planes. 
 

Set A in Boudard  Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 

Combined  Composition 
(at.%) 

Total density 
of 
the 

terminations 
(Atoms /nm2) 

4.98 Al(100.00) 8.02 

4.93 Al(26.45), Pd(59.53), Mn(14.03) 5.57 
Al(69.87), Pd(24.38), Mn(5.75) 13.59 

4.32 Al(88.92), Mn(11.08) 8.85 

4.27 Al(60.91), Pd(39.09) 4.64 
Al(79.28), Pd(13.45), Mn(7.27) 13.48 

3.91 Al(100.00) 6.58 

3.86 Al(29.70), Pd(45.93), Mn(24.37) 7.06 
Al(63.51), Pd(23.84), Mn(12.65) 13.64 

3.25 Al(96.13), Mn(3.87) 8.57 

3.20 Al(33.16), Pd(66.15), Mn(0.69) 5.08 
Al(72.69), Pd(24.62), Mn(2.69) 13.65 

2.85  Al (100.00) 4.63 

2.80  Al(35.23), Pd(38.64), Mn(26.13)  8.568 
Al(57.77), Pd(25.20), Mn(17.04) 13.21 

2.18 Al (100.00) 7.54 

2.14 Al(27.86), Pd(52.43), Mn(19.71) 6.11 
Al(67.84), Pd(23.37), Mn(8.79) 13.65 

1.52 Al(91.13), Mn(8.87) 8.81 

1.48  Al(48.36), Pd(51.64) 4.82 
Al(76.01), Pd(18.26), Mn(5.73) 13.63 

1.12 Al (100.00) 5.85 

1.07 Al(31.22), Pd(43.51), Mn(25.26) 7.67 
Al(60.91), Pd(24.73), Mn(14.36) 13.52 

0.46 Al (100.00) 8.27 

0.41 Al(27.44), Pd(62.69), Mn(9.88) 5.32 
Al(71.62), Pd(24.52), Mn(3.86) 13.59 

-0.20 Al(87.88), Mn(12.12) 8.79 

-0.25 Al(68.64), Pd(31.36) 4.48 
Al(81.40), Pd(10.56), Mn(8.04) 13.27 

-0.61 Al (100.00) 6.95 

-0.66 Al(29.20), Pd(47.85), Mn(22.94) 6.75 
Al(65.26), Pd(23.48), Mn(11.26) 13.71 

-1.27 Al(94.01), Mn(5.99) 8.69 

-1.32 Al(38.53), Pd(61.47) 4.99 
Al(73.77), Pd(22.42), Mn(3.81) 13.68 

-1.68 Al (100.00) 5.15 

-1.73 Al(33.00), Pd(40.74), Mn(26.25) 8.19 
Al(58.78), Pd(25.07), Mn(16.15) 13.34 
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Table XIII. Continued…Compositions  and densities of individual planes and layers in the 
Pd- and Pd+ types of terminations in the Boudard model. In the Boudard model, a layer is a 
pair of planes. 
 

Set A in Boudard  Model  
 (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

-2.34 Al (100.00) 7.88 

-2.39 Al(26.40), Pd(56.76), Mn(16.84) 5.74 
Al(69.11), Pd(23.82), Mn(7.07) 13.63 

-3.00 Al(89.67), Mn(10.33) 8.83 

-3.05 Al(55.46), Pd(44.54) 4.67 
Al(77.84), Pd(15.41), Mn(6.75) 13.50 

-3.41 Al(100.00) 6.38 

-3.46 Al(29.07), Pd(46.14), Mn(24.79) 7.29 
Al(62.17), Pd(24.61), Mn(13.22) 13.67 

-4.07 Al(97.74), Mn(2.26) 8.49 

-4.12 Al(30.09), Pd(65.56), Mn(4.35) 5.13 
Al(72.27), Pd(24.69), Mn(3.04) 13.62 

-4.73 Al(87.10), Mn(12.90) 8.80 

-4.78 Al(78.20), Pd(21.80) 4.27 
Al(84.22), Pd(7.05), Mn(8.73) 13.07 
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Table XIII. Compositions  and densities of individual planes and layers in the Pd- and Pd+ 
types of terminations in the Boudard model. In the Boudard model, a layer is a pair of planes. 
 

Set B in Boudard  Model 
  (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

-4.98 Al(100.00) 6.89 

-4.93 Al(29.09), Pd(47.67), Mn(23.24) 6.80 
Al(64.79), Pd(23.68), Mn(11.54) 13.70 

-4.32 Al(94.70), Mn(5.30) 8.68 

-4.27 Al(36.29), Pd(63.71) 5.00 
Al(73.34), Pd(23.29), Mn(3.37) 13.68 

-3.91 Al(100.00) 5.02 

-3.86 Al(33.92), Pd(39.99), Mn(26.09) 8.36 
Al(58.60), Pd(25.06), Mn(16.35) 13.38 

-3.25 Al(100.00) 7.79 

-3.20 Al(27.21), Pd(55.02), Mn(17.77) 5.80 
Al(68.94), Pd(23.48), Mn(7.78) 13.59 

-2.59 Al(89.87), Mn(10.13) 8.79 

-2.54 Al(54.01), Pd(45.99) 4.71 
Al(77.39), Pd(16.00), Mn(6.60) 13.49 

-2.18 Al (100.00) 6.24 

-2.14 Al(29.36), Pd(45.68), Mn(24.96) 7.40 
Al(61.66), Pd(24.79), Mn(13.55) 13.64 

-1.52 Al (98.33), Mn(1.67) 8.43 

-1.48 Al(28.80), Pd(65.36), Mn(5.84) 5.16 
Al(71.94), Pd(24.81), Mn(3.25) 13.59 

-0.86 Al(87.19), Mn(12.81) 8.79 

-0.82 Al(75.50), Pd(24.50) 4.35 
Al(83.35), Pd(8.05), Mn(8.60) 13.14 

-0.46 Al (100.00) 7.33 

-0.41 Al(27.61), Pd(50.16), Mn(22.24) 6.30 
Al(66.54), Pd(23.18), Mn(10.28) 13.63 

0.20 Al(92.76), Mn(7.24) 8.73 

0.25 Al(42.38), Pd(57.62) 4.88 
Al(74.75), Pd(20.60), Mn(4.65) 13.62 

0.61 Al (100.00) 5.51 

0.66 Al(31.67), Pd(42.31), Mn(26.02) 7.96 
Al(59.61), Pd(25.01), Mn(15.38) 13.47 
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Table XIII. Continued…Compositions  and densities of individual planes and layers in the 
Pd- and Pd+ types of terminations in the Boudard model. In the Boudard model, a layer is a 
pair of planes. 
 

Set B in Boudard  Model 
  (Pd– viewed from positive X  to negative X or Pd+ viewed from negative X  to positive X ) 

Location 
(nm) 

Composition 
(at.%) 

Density 
(Atoms/ 

nm2) 
Combined  Composition 

(at.%) 

Total 
density of 

the 
terminations 

(Atoms 
/nm2) 

1.27 Al (100.00) 8.14 

1.32 Al(26.66), Pd(62.87), Mn(10.47) 5.44 
Al(71.33), Pd(24.58), Mn(4.09) 13.58 

1.93 Al(88.68), Mn(11.32) 8.79 

1.98  Al(62.02), Pd(37.98) 4.57 
Al(79.59), Pd(12.95), Mn(7.46) 13.36 

2.34 Al (100.00) 6.70 

2.39 Al(28.91), Pd(46.83), Mn(24.25) 6.97 
Al(63.75), Pd(23.88), Mn(12.37) 13.68 

3.00 Al(96.04), Mn(3.96) 8.57 

3.05  Al(33.17), Mn(66.83)  5.04 
Al(72.83), Pd(24.68), Mn(2.50) 13.61 

3.41 Al(100.00) 4.37 

3.46 Al(34.06), Pd(39.72), Mn(26.22) 8.55 
Al(57.58), Pd(25.55), Mn(16.87) 13.29 

4.07 Al(100.00) 7.65 

4.12 Al(26.78), Pd(53.48), Mn(19.73) 5.95 
Al(67.96), Pd(23.41), Mn(8.64) 13.60 

4.73 Al(90.70), Mn(9.30) 8.79 

4.78 Al(50.32), Pd(49.68) 4.77 
Al(76.55), Pd(17.41), Mn(6.04) 13.56 
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Figure 5 
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Figure 6 
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Figure 7 
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APPENDIX B. STM DATA COLLECTION RECORD 
Table 1. STM database of experiments on fivefold surface of i-Al-Pd-Mn 

 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used 
in the paper+

031604 953K, 3 hours 

A few images with 
voids on some terraces, 

images quality is not 
great 

 

031704 923K, 1 hour 40min 
Cooling rate:28K/min 

Periodic structures, 
definitely not 

quasicrystalline 
 

031904 923K, 2 hours 30min 
Cooling rate:16K/min 

Large terraces, high 
resolution images from 

some terraces where 
dark stars and white 

flowers can be clearly 
seen, voids on some 

terraces 

m15-Fig. 5. a9

032004 923K, 2 hours 30min 
Cooling rate:1.9K/min Very similar to 031904  

041104 
905-923K, 2 hours 

30min 
Cooling rate:8.9K/min 

Very similar to 031904 
but temperature varies 

on the sample 
 

041804 
905-925K, 3 hours  

Cooling 
rate:100K/min 

Large terraces, voids 
on some terraces  

050704 

905-925K, 3 hours 
25min  

Cooling 
rate:117K/min 

Very similar to 
031904.But, 

Temperature varies on 
the sample. 

m54-Fig. 4.a1 

m99-Fig.1.c1 

m117-Fig.5.a1 

m104-Fig. 5.b9

050904 
905-923K, 3 hours 

25min 
Cooling rate:16K/min 

Very similar to 031904  

5f-AlPdMn 

051304 913K, 3 hours Very similar to 031904  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

051404 
900-913K, 3 hours 

25min 
Cooling rate:8.5K/min 

Very similar to 
031904 m20-Fig 1.a1

051804 900-923K, 3 hours 
Cooling rate:8.5K/min 

Very similar to 
031904  

060404 923K, 3 hours 50min 
Cooling rate:9.4K/min 

Periodic structures, 
definitely not 

quasicrystalline 
 

061004 903K, ~4 hours 
Cooling rate:10K/min 

Voids on some 
terraces, bumps 

~10nm 
 

061804 910K, 3 hours 
Cooling rate:9.7K/min 

Lots of screw 
dislocations, voids on 
some terraces, not a 

great surface 

 

061904 910K, 3 hours 
Cooling rate:9.7K/min 

Voids, darks stars are 
visible but images are 

not so great 
 

062004 
910K, 3 hours 25min 

Cooling 
rate:10.5K/min 

Voids on some 
terraces, bumps ~5nm  

062104 
903K, ~4 hours 

Cooling 
rate:10.3K/min 

Terraces with straight 
step edges, voids, 

bumbs~5nm 
 

062204 910K, 3 hours 10min 
Cooling rate:9.7K/min 

Voids on some 
terraces, some of the 
voids are pentagonal, 
terraces with straight 

step edges, voids, 
bumbs~5nm 

 

5f-AlPdMn 

062304 
913K, 3 hours 20min 

Cooling 
rate:13.3K/min 

Voids on some 
terraces, bumps ~6nm  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

062504 
910K, 3 hours 50min 

Cooling 
rate:10.6K/min 

Very similar to 
031904  

062704 899K, 2 hour 30min 
Cooling rate:9.9K/min 

Voids on some 
terraces, bumps ~6nm, 
a screw dislocation in 

the middle of a 
terrace, images are not 

so great 

 

062904 
900K, ~4 hours 

Cooling 
rate:10.2K/min 

Voids on some 
terraces, excellent 

high resolution images 
from several terraces 

adjacent to each other. 
Bumps ~10nm 

m22-Fig.3.a1 

m26-Fig.3.b1 

m90-Fig. 3.c1 

m102-Fig. 21

070704 915K, 3 hours 35min 
Cooling rate:11K/min 

Surface was not clean 
enough, huge bumps, 

voids on some 
terraces. 

 

070904 905K, 3 hours 40min 
Cooling rate:10K/min 

Voids on some 
terraces, some of the 
voids are pentagonal, 

star shaped void?, 
relatively good 

images, some part of 
the surface has huge 

bumps 

 

071304 915K, 3 hours 45min 
Cooling rate:11K/min 

Voids on some 
terraces, organized 

void pattern on some 
terraces 

m21-Fig. 1.b1

071904 920K, 3 hours 40min 
Cooling rate:11K/min 

A few low quality 
images  

5f-AlPdMn 

080304 910K, 3 hours 40min 
Cooling rate:10K/min Similar to 071904  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 

 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

080904 
921K, 4 hours 10min 

Cooling 
rate:11.6K/min 

Pits on some terraces, 
at the bottom of pits, 

lots of voids are 
visible. One ~0.1nm 
deep pentagonal void 

with ~40 nm edge 
length. A ~3nm deep 

pit on one terrace. 

 

081004 
913K, 4 hours 10min 

Cooling 
rate:11.3K/min 

Voids, bumps~6nm  

081304 
913K, ~4 hours  

Cooling 
rate:11.5K/min 

Voids, terraces with 
straight step edges  

081704 910K, ~4 hours  
Cooling rate:9.2K/min Voids on some teraces  

082404 906K, ~4 hours  
Cooling rate:9.3K/min Voids on some teraces  

082504 913K, ~4 hours  
Cooling rate:9.3K/min 

Lots of screw 
dislocations, 

incomplete terraces. 
 

082704 916K, 3 hours 20min  
Slow cooling. 

Periodic structure 
domain co-exist with 
quasicrystalline one. 
Pentagonal void and 
pentagonal islands. 
Screw dislocations 

m10-Fig. 69 

m15-inset in 
Fig. 69

083004 
913K, ~4 hours  

Cooling 
rate:11.5K/min 

Terraces with straight 
and kinked step edges  

5f-AlPdMn 

083104 
911K, ~4 hours  

Cooling 
rate:11.5K/min 

Voids on some 
terraces  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

090404 
920K, ~3 hours  

Cooling 
rate:11.5K/min 

Large terraces, voids 
on some.  

090704 933K, ~2 hours  
Slow cooling. 

Large terraces, voids 
on some, screw 

dislocations, lots of 
bumps~5nm, part of 

the surface is not clean 
enough 

 

091004 
933K, ~4 hours  

Cooling 
rate:11.5K/min 

Similar to 083004  

091304 
933K, ~4 hours  

Cooling 
rate:11.5K/min 

Similar to 090404 but 
with bumps on some 
terraces, several pits 
with voids at their 

bottoms 

 

091404 
915K, ~3 hours  

Cooling 
rate:11.5K/min 

Similar to 090404  

091504 913K, ~ 1 hour Pits and voids m1-Fig. 22

091804 918K, 2 hours  Similar to 090404 
with bumps~3nm  

091904 913K, 2 hours Similar to 090404  

092104 
918K, 3 hours 
Cooling rate: 
12.5K/min 

Similar to 090404  

092204 
918K, 3 hours 
Cooling rate: 
12.5K/min 

Void and pits. Some 
pits are pentagonal.  

120104 918K, 2 hours 30min 
 

A few low quality 
images  

120604 913K, 3 hours Similar to 120104  

5f-AlPdMn 

122204 918K, 2 hours 30min 

Terraces with kinked 
step edges. Medium 
resolution images 

from some terraces. 
Fivefold symmetry is 

visible. 
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

122404 
903K, 3 hours 
Cooling rate: 
11.4K/min 

Voids on some 
terraces. High 

resolution images 
from some terraces. 
Darkstars and white 

flowers are visible on 
adjacent terraces. 

 

122604 

913K, 2 hours 30min 
953K, 20 min  
Cooling rate: 
11.1K/min 

Large terraces, a few 
high resolution 

images, darkstars and 
white flowers 

 

122704 

908K, 2 hours 30min 
918K, 30min 
Cooling rate: 
10.3K/min 

Voids and pits  

122904 
903K, 1 hour 
953K, 2 hours 

Cooling rate: 11K/min 
Similar to 120104  

010205 950K, 3 hours 
Cooling rate: 11K/min 

Excellent high 
resolution images, the 

best ever. 

m15-Fig. 13

m57-Fig. 4.b12 

m60-Fig. 6.b5 

m66-to Pat13

010405 

943K, 2 hours 30 min 
Cooling rate: 10.5 

K/min 
Ag deposition at 127 

K Coverage: 0.2ML to 
9.8ML 

Flux:~1x10-3 ML/s 

Large terraces. Pits 
and voids on some. 

Clean surface: m1-m5 
m6-Fig 1. a5

010805 

939K, 3 hours 
Cooling rate: 11 

K/min 
 

Periodic structures, 
definitely not 

quasicrystalline. 
 

011605 953 K, 3 hours  
Cooling rate: 11K/min Large terraces  

5f-AlPdMn 

011705 950 K, 3 hours  
Cooling rate: 11K/min 

Periodic structures. 
High resolution 
images but not 
quasiperiodic. 
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

012305 943 K, 3 hours  
Cooling rate: 12K/min 

A few low quality 
images. The surface 

has cluster like 
features. 

 

012405 943 K, 3 hours  
Cooling rate: 12K/min Similar to 012305  

012605 
943 K, 3 hours  
Cooling rate: 

9.5K/min 

Very rough surface 
with cluster like 

features at different 
length scales. No 

terraces at all. 

 

020505 893K, 1 hour 30 min; 
908K, 1 hour 

Voids on some 
terraces. Some part of 
surface has cluster like 

features. 

 

020805 953K, 3 hours Terraces but mainly 
very narrow.  

021305 
893K, 1 hour ; 
908K, 30 min; 
913K, 30 min 

A few images with 
high resolution. Dark 

stars and white 
flowers are visible. 

Bumps~3nm 

 

021405 

933K, 2 hours; 
Ag deposition at 200 

K.  
Coverage 0.15ML to 

5.5 ML 
Flux ~2.5x10-3ML/s 

Large terraces. Screw 
dislocations. 

Clean surface: m1-m5 
Image quality is not 

great. 

m6-Fig. 1. b5

022105 
893K, 2 hour ; 
903K, 30 min; 
938K, 45 min 

Terraces with kinked 
step edges.  

022305 

938K, 3 hours 
Ag deposition at 365 
K. Coverage: 0.26ML 

to 1.4ML 
Flux~1x10-3 ML/s 

Clean surface: m1-m6 
Flat-top, steep-edge, 

~0.8 nm high Ag 
islands formed. QSE 

effect. 

m33-Fig. 1. e5 

m42-Fig. 1. a7 

m64-Fig. 1. b7 

m79-Fig. 1. c7 

m80-Fig. 310

5f-AlPdMn 

030205 933K, 2 hours 30 min Large terraces. Voids 
on some.  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

030305 933K, 3 hours A few images.  

031205 908K, 3 hours 20 min 
Voids on some 

terraces. Several high 
resolution images. 

m1-Fig. 12

061005 

948 K, 2 hours.  
The sample for 

Berkeley LEEM 
experiments 

Large terraces, 
chicken-wire type 

appearance of steps. 
 

061105 

948 K, 2 hours 45min 
The sample for 

Berkeley LEEM 
experiments 

Large terraces  

061305 

948 K, 2 hours 30 min 
The sample for 

Berkeley LEEM 
experiments 

Clusters on terraces. 
Up to m21, after 
annealed surface; 

from m21 to m27 after 
annealed, steps form a 
chicken-wire network. 

 

073105 

903K, 4 hours 
The sample for 

Berkeley LEEM 
experiments 

Large terraces, voids 
are elongated along a 

certain direction. 
 

091005 2.2Ax8.5V, 2 hours; 
2.3Ax9.0V, 10min 

Large terraces, pits 
and .voids. Darks 

stars. 
 

091105 2.2Ax8.5V, 2 hours; 
2.3Ax9.0V, 15min 

A few images with 
large terraces  

5f-AlPdMn 

091205 

2.2Ax8.5V, 2 hours; 
2.3Ax9.0V, 10min 

Ag deposition at 365 
K. Coverage: 0.13ML 

to 2.5ML. 
Flux: 2.2x10-3 ML/s 

Large terraces. 
Clean surface: m1-m7. 

Pseudomorphic Ag 
film growth. Bias 

dependent experiment. 
Total coverage is not 
uniform all over the 

surface 

m15-Fig. 1. a7

m30-Fig. 1. a6  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

092205 

2.3Ax9.0V, 2 hours; 
2.4Ax9.4V, 20min. 

Ag deposition at 365 
K. Coverage: 0.15ML 

to 11ML. 
Flux~2x10-3ML/s 

Large terraces, dark 
stars, white flowers. 
Clean surface : m1-

m4. 
Two different types of 
film growth ;1) from 

m5 to m61 
2) from m62 to m340. 

Grain boundaries 
between the Ag 

islands are visible. 

 

100605 

940K, 2 hours 30min 
Ag deposition at 365 
K. Coverage: 0.15ML 

to 10ML. 
Flux~1x10-3 ML/s 

Large terraces, fine 
features 

Clean surface : m1-
m10. 

Grain boundaries 
between the Ag 

islands are visible. 

 

101005 

940K, 2 hours 30min 
Ag deposition at 345 
K. Coverage: 0.15ML 

to 10ML. 
Flux~1x10-3 ML/s 

Large terraces, dark 
stars, white flowers. 
Clean surface : m1-

m14. 
Grain boundaries 
between the Ag 

islands are visible. 

m20-Fig. 1. d6

101505 

940K, 2 hours 30min 
Ag deposition at 365 
K. Coverage: 0.1ML 

to 1ML. 
Flux~1x10-3 ML/s 

Large terraces. 
Clean surface: m1-m3 m16-Fig. 1. b6

101605 

940K, 2 hours 40min 
Ag deposition at 365 
K. Coverage: 0.15ML 

Flux~1x10-3 ML/s 

Large terraces. Tip 
induced bumps.  

5f-AlPdMn 

110605 940K, 2 hours 30min A few images with 
large terraces.  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

110705 

943K, 2 hours 30min 
Ag deposition at 365 
K. Coverage: 0.1ML 

to 1ML. 
Flux~1x10-3 ML/s 

Large terraces, dark 
stars, white flowers. 
Clean surface : m1-

m29. 
 

 

110805 

943K, 2 hours 30min 
Ag deposition at 365 
K. Coverage: 0.24ML 

to 17ML. 
Flux~1.3x10-3 ML/s 

Large terraces. Clean 
surface : m1-m3. 
Grain boundaries 
between the Ag 

islands are visible. 

 

112005 948K, 2 hours 30min A few images with 
large terraces  

112605 933K, 2 hours Similar to 112305  
120305 933K, 2 hours 

Ag deposition at 
330K. Coverage: 
0.5ML to 5.2ML. 

Flux~1.6x10-3 ML/s 

Large terraces. Clean 
surface : m1-m6. 

Second surface phase 
exists. 

Grain boundaries 
between the Ag 

islands are visible. 

 

120905 911K, 3 hours Large terraces with 
kinked step edges.  

121005 

913K, 3 hours 
Ag deposition at 
365K. Coverage: 
0.15ML to 1ML. 

Flux~1x10-3 ML/s 

Large terraces with 
screw dislocations. 

Clean surface: m1-m4 
 

121105 923K, 3 hours 
 

Terraces with screw 
dislocations. Uniform 

size protrusions on 
terraces. 

 

121405 913K, 3 hours 30min One image with 
dislocations.  

5f-AlPdMn 

121505 923K, 2 hours 45min One image with step 
bunching.  
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Table 1. Continued… STM database of experiments on fivefold surface of i-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

121905 

923K, 3 hours 
Ag deposition at 
365K. Coverage: 
0.15ML to 1ML. 

Flux~1x10-3 ML/s 

Terraces with screw 
dislocations. 

Clean surface: m1-m4. 
Tried every point STS 

but without success 
due to tip and also 

noise. 

 

122305 918K, 3 hours 10min 
 

Large terraces. Fine 
features. No darks 

stars but some white 
flowers. 

 

122805 

918K, 2 hours 45min 
Ag deposition at 
365K. Coverage: 
0.7ML to 1.4ML. 

Flux~3.9x10-3 ML/s 

Periodic surface phase 
with atomic 
resolution. 

Clean surface: m1-
m58 

 

010606 

920K, 2 hours; 
908K, 1 hour; 
933K, 3 min. 
Slow cooling. 

Still periodic surface 
phase  

010906 963K, 3 hours 10min; 
 

Still periodic surface 
phase. Atomic 

resolution images. 
Dislocations. 

 

011106 933K, 2 hours 45min. Similar to 010906  

011206 913K, 2 hours 45min; 
953K, 1 hours. 

One image. Very 
rough surface.  

011806 903K, 2 hours 30min; 
943K, 1 hour. 

Terraces with kinked 
step edges. Lots of 
screw dislocations. 

 

011906 
973K,  45min; 
1003K,  30min; 

Cooling rate: 8K/min 

Finally terraces with 
dark stars and white 

flowers. 
 

5f-AlPdMn 

012306 

963K,  3 hours; 
Ag deposition at 
365K. Coverage: 
0.2ML to ~1ML. 

Flux~1x10-3 ML/s 

Relatively large 
terraces. Clean 

surface: m1-m16. 
Pseudomorphic Ag 

films. See m40-m42. 
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Table 2.  STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

062906 1200K, 1 hour 

Relatively narrow 
terraces with lots of 
pinning sites. Part of 

alumina layer that pins 
a terrace is visible. 
Holes with  ~0.8nm 

diameter on the 
alumina layer 

 

070206 1200K, 1 hour Terraces with lots of 
pinning sites.  

070306 1200K, 1 hour Similar to 070206  
070606 1200K, 1 hour Similar to 070206  
070806 1200K, 1 hour 25min Similar to 070206  
071006 1200K, 1 hour Similar to 070206  
071306 1123K, 1 hour Similar to 070206  
071806 1123K, 1 hour Similar to 070206  
071906 1123K, 1 hour Similar to 070206  
072006 1123K, 1 hour Similar to 070206  
072106 1113K, 1 hour Similar to 070206  

072406 

1128K, 1 hour 
Ag deposition at 
300K. Coverage 

(time): 0.4ML(2min) 
to 2.6ML(13min) 

Flux~3.2x10-3ML/s 

Relatively narrow 
terraces. 

Clean surface: m1-m2. 
Noisy images.  

Ag nucleates at step  
edges and forms finger 

like islands. 

 

072506 1128K, 1 hour 30min 
 

Narrow terraces with 
lots of pinning sites.  

072706 1128K, 1 hour 30min 
 

Similar to 072506 but 
the surface is getting 

better. A screw 
dislocation. 

 

072806 1128K, 1 hour 30min Similar to 072706  
080306 1128K, 1 hour 50min Similar to 072706  

NiAl 

081006 1128K, 1 hour 50min 
 

Surface is not clean 
enough. Tip is not so 

great, too. 
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

081306 

1223K, 3 hours 30min 
Ag deposition at 
300K. Coverage 

(time): 0.4ML(2min) 
to 20ML(105min) 

Flux=3.2x10-3 ML/s 

Narrow terraces 
~100nm.  

Clean Surface: m1-12. 
Ag nucleates at step  

edges and forms finger 
like islands. Ripples 

on Ag islands.  

m21-Fig. 3. a8 

m42-Fig. 3. b8 

m88-Fig. 3. c8 

m113-Fig. 3. d8 

m38-Fig. 8. a8 

m72-Fig. 8. b8 

m98-Fig. 8. d8 

m116-Fig. 8. e8 

m97-Fig. 108

081506 1223K, 2 hour 30min 
 

Terraces with pinning 
sites  

081806 

1223K, 3 hours. 
Ag deposition at 

127K. 
Coverage(time): 
0.6ML(1min)to 
31.5ML(75min)  

Flux ~7x10-3ML/s 

Narrow terraces 
~70nm.  

Clean Surface: m1-10. 
Ag nucleates in 

terraces. Noisy data. 
Tip effects. A different  

Ag growth mode on 
some terraces, perhaps 
on alumina parts see 

m83-m87. 

m27-Fig. 1. a11

082306 1223K, 3 hours. Two bad images.  

090706 1223K, 2 hours 50min Two images showing 
step bunching.  

091106 1223K, 3 hours. 
Step bunching. White 

protrusions on 
terraces. 

 

NiAl 

091206 

1223K, 2 hours 45min 
Ag deposition at 450K 

Coverage (time): 
0.2ML(1min) to 
15ML(75min) 

Flux = 3.2x10-3 ML/s 

Step bunching. 
Clean surface: m14-
m18 (image number 

stars from m14) 
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

091506 

1223K, 2 hours 30min 
Ag deposition at 

200K. 
Coverage: 

0.3ML(1min) to 
42ML(105min) 

Flux=6.6x10-3 ML/s  

Relatively larger 
terraces, with step 

bunching. 
Clean surface :m1-

m10. Bias dependent 
experiments (-2.4V to 

2.4 V) 

m36-Fig. 2. a8 

m133-Fig. 2. b8 

m163-Fig. 2. c8 

m201-Fig. 2. d8 

m147-Fig. 6. a8 

m116-Fig. 6. b8 

m104-Fig. 6. c8 

m142-Fig. 6. d8 

m152-Fig. 6. e8 

m137-Fig. 8. c8 

m225-Fig. 11.a8 

m230-Fig. 11.b8

091906 1223K, 2 hours A few low quality 
images.  

092006 1223K, 1 hour Not a clean surface.  
092206 1223K, 2 hours 15min Lots of step bunching.  

092506 1223K, 2 hours Similar to 092206. Tip 
effects.  

092806 

1223K, 2 hours. 
Ag deposition at 175K 

Coverage(time): 
0.4ML (1min) 

Flux=6.6x10-3 ML/s 

Clean surface: m1 
Extreme tip effects.  m6-Fig. 1. c11

100206 

1223K, 2 hours 
Ag deposition at 150K 

Coverage(time): 
0.4ML(1min) to 
17ML(42min) 

Flux=6.6x10-3 ML/s 

Clean surface: m1-m5 
After m152, the 

sample is heated to 
200K. 

m8-Fig. 1. b11

100306 300K 
The same surface as 
100206 but waited 

over night 
 

NiAl 

100706 

1223K, 2 hours 40min 
Ag deposition at 140K 

Coverage(time): 
0.4ML(1min)  

Flux=6.6x10-3 ML/s 

Large terraces. 
Clean surface: m1-m3 

Tip effects. 
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

101106 

1223K, 2 hours 40min 
Ag deposition at 185K 

Coverage(time): 
0.4ML(1min)  

Flux=6.6x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m7 
Tip effects. 

 

102606 1223K, 2 hours  A few bad images  

103106 1223K, 2 hours 
Very large terraces 

~300nm but not clean 
enough. 

 

110306 1223K, 2 hours Large terraces but a 
dirty tip.  

110706 

1223K, 2 hours 30min 
Ag deposition at 185K 
Coverage(time):0.4M

L(1min)  
Flux=6.6x10-3 ML/s 

Very large terraces 
~400nm. 

Clean surface: m1-m4 
Noisy data. 

 

111406 1223K, 2 hours Very large terraces but 
dirty tip.  

111806 

1223K, 2 hours 
Ag deposition at 300K 

for flux calibration 
Coverage(time): 0.2 

ML (20sec) 
Flux=1.0x10-2 ML/s 

Very large terraces 
~500nm. 

Clean surface: m1-m6 
 

 

111906 

1223K, 2 hours 
Ag deposition at 300K 

for flux calibration 
Coverage(time): 0.9 

ML (20sec) 
Flux=4.5x10-2 ML/s 

Very large terraces 
~300nm. 

Clean surface: m1-m4. 
Noisy data. 

 

NiAl 

112006 

1223K, 2 hours 
Ag deposition at 300K 

for flux calibration 
Coverage(time): 1.1 

ML (8sec) 
Flux=1.4x10-1 ML/s  

Very large terraces 
~300nm. 

Clean surface: m1-m5. 
Noisy data. 

 

 
 
 



 288

Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

112206 1230K, 2 hours 

Large terraces, cluster 
like huge features. 
Surface seems not 

clean enough. 

 

121806 1273K, 2 hours 
Large terraces, tip 

drops dirt and noisy 
data 

 

010207 
1303K, 1 hour 10min, 

1353K, 10 min 
 

Large terraces 
~250nm, 

Tip effects. 
 

010407 

1303K, 1 hour 10min, 
1353K, 20 min. 
Ag deposition at 
140K, 0.4 ML, 

Flux=6.7x10-3 ML/s 

Large terraces 
~250nm. 

Clean surface: m1-m3. 
Double tip effects. 

m51-Fig. 3. a11

010907 

1303K, 2 hour 30min, 
1353K, 20 min. 

Ag deposition at ? 
Coverage: 0.4 ML 

Flux= 6.7x10-3 ML/s 

Large terraces 
~250nm 

Clean surface: m1-m5. 
Tip effects.  

 

011507 

1303K, 2 hour 30min, 
1353K, 15 min. 

Ag deposition at 250K 
Coverage: 0.4 ML to 

10 ML 
Flux= 6.7x10-3 ML/s 

Very large terraces 
~600nm. 

Clean surface: m1-m6. 
Protrusions 

surrounded by 
depressions on clean 

surface.  

 

011907 

1303K, 1 hour 50min, 
1353K, 20 min. 

Ag deposition at 100K 
Coverage: 0.4 ML (1 

min) 
Flux= 6.7x10-3 ML/s 

Relatively large 
terraces ~400nm. 

Clean surface: m1-
m34. 

Very noisy data. Dirty 
tip. 

 

NiAl 

012307 

1303K, 1 hour 50min, 
1353K, 20 min. 

Ag deposition at 300K 
Coverage: 0.4ML 

Flux= 6.7x10-3 ML/s 

Very large terraces 
~700nm. 

Clean surface: m1-14. 
Very dirty tip. 

Changed the tip after 
m20. 
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

012707 

1303K, 2 hour 42min, 
1353K, 15 min. 

Ag deposition at 50K 
Coverage: 0.4ML 

Flux= 6.7x10-3 ML/s 

Very large terraces 
~700nm. 

Clean surface: m1-m5. 
Extremely bad tip. 
Very noisy data.  

 

013107 1303K, 1 hour 30min, 
1353K, 15 min. 

Large terraces. Very 
dirty tip.  

020407 

1303K, 3 hours, 
1353K, 15 min. 

Ag deposition at 225K 
Coverage: 0.4ML 

Flux= 6.7x10-3 ML/s 

Large terraces 
~350nm. 

Clean surface: m1-m7. 
Very noisy data. 

 

020707 

1303K, 2 hours, 
1353K, 15 min. 

Ag deposition at 275K 
Coverage: 0.4ML 

Flux= 6.7x10-3 ML/s 

Very large terraces 
~650nm. 

Clean surface: m1-m6. 
Dirty tip. 

 

021107 1303K, 1 hour 40min, 
1353K, 20 min. 

Very low quality 
images. Bad surface.  

021407 1303K, 1 hour 40min, 
1337K, 15 min. Similar to 021107  

021707 

1303K, 1 hour 35min, 
1353K, 15 min. 

Ag deposition at 190K 
Coverage (time): 
0.4ML (1 min) 

Flux= 6.7x10-3 ML/s 

Very large terraces 
~500nm. 

Clean surface: m1-m5. 
Double tip effects. 

m46-Fig. 1. d11

022207 1243K, 2 hour 15min, 
1293K, 15 min. Large terraces.  

030207 

1273K, 1 hour 40min, 
Ag deposition at 150K 
Coverage (time): 0.7 

ML (10 sec) 
Flux= 7x10-2 ML/s 

Large terraces 
~300nm. 

Clean surface: m1. 
Tip effects. 

 

031607 1203K, 1 hour 40min. Terraces with pinning 
sites.  

031807 1208K, 2 hours 30min Similar to 031607  
032107 1208K, 2 hours  One ugly image.  

NiAl 

032707 1203K, 1 hour 30min. Bad surface and dirty 
tip.  
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

033007 1203K, 2 hours 
30min. Similar to 032707  

040307 1203K, 1 hour 30min. 
Surface is getting 

better. Terraces with 
several pinning sites. 

 

040507 

1203K, 2 hours. 
Ag deposition at 150K 

Coverage(time): 
0.4ML (10 min) 

Flux= 6.7x10-4 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m5. 
Tip effects. 

 

040907 

1203K, 1 hour 50min 
Ag deposition at 150K 
Coverage(time): 1ML 

(7min) 
Flux= 2.3x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m8. 
Very noisy data. 

 

041807 

1203K, 1 hour 50min 
Ag deposition at 150K 

Coverage(time): 
0.3ML (2.5min) 

Flux= 2.0x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m9. 
Very noisy data. 

 

042507 

1203K, 1 hour 30min 
Ag deposition at 150K 

Coverage(time): 
0.4ML (1min) 

Flux= 6.7x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m5. 
Very noisy data. 

 

042907 1248K, 1hour 30min Very large terraces 
~500nm. 

 

050407 

1248K, 2 hours. 
Ag deposition at 150K 

Coverage(time): 
0.4ML (1min) 

Flux= 6.7x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-
m42. 

Very noisy data. Very 
bad tip. 

 

NiAl 

051307 

1248K, 1 hour 30min 
Ag deposition at 150K 

Coverage(time): 
0.4ML (1min) 

Flux= 6.7x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-m7. 
Very noisy data. Very 

bad tip. 
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Table 2.  Continued… STM database of experiments on 110 surface of NiAl 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the paper+

060607 1248K, 1 hour 40 min. Large terraces 
~500nm  

110807 1293K, 2 hours Similar to 060607. 
New tip cleaning.  

111107 1293K, 2 hours Step bunching.  

111307 

1293K, 1 hour 20min 
Ag deposition at 140K 

Coverage(time): 
0.4ML (1min) 

Flux= 6.7x10-3 ML/s 

Terraces with pinning 
sites 

Clean surface: m1-
m26. 

Noisy data. Very bad 
tip. Double tip effects. 

 

120207 1333K, 1 hour 25min Very rough surface  

120307 

1333K, 2 hours 
Ag deposition at 130K 

Coverage(time): 
0.28ML (5 sec) 

Flux= 5.6x10-2 ML/s 

Large terraces 
~300nm 

Clean surface: m1-m5. 
Coarsening 

experiment (130K to 
275K) 

m8-Fig. 3. b11

120907 

1300K, 2 hours 
Ag deposition at 140K 

Coverage(time): 
0.3ML (5 sec) 

Flux= 5.6x10-2 ML/s 

Large terraces 
~300nm 

Clean surface: m1-m6. 
An unsuccessful 

coarsening experiment 
attempt. 

 

121407 

1273K, 2 hours 
Ag deposition at 140K 

Coverage(time): 
0.3ML (5 sec) 

Flux= 5.6x10-2 ML/s 

Large terraces 
~300nm 

Clean surface: m1-m3. 
An unsuccessful 

coarsening experiment 
attempt. 

 

NiAl 

122307 1200K, 2 hours 
 

Terraces with pinning 
sites and bumps.  
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Table 3.  STM database of experiments on pseudo tenfold surface of ξ/-Al-Pd-Mn 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the papers 

031705 803K, 1 hour 20min 

Terraces with lots of 
pinning sites. Fine 
features are also 

visible. 

 

040205 813K, 2 hours A few images, lots of 
pinning sites.  

040305 823K, 2 hours 20 min Similar to 031705  
041005 823K, 2 hours 20 min Similar to 040205  
041705 823K, 2 hours 20 min Similar to 031705  

042105 823K, 3 hours 20 min Only two images with 
lots of pinning sites  

042805 823K, 3 hours Only two images with 
fine features  

051005 823K, 3 hours 40 min 
Large terraces with 
pinning sites, fine 

features 
 

051305 823K, 2 hours 12 min 

Only two images, 
large terraces with 

pinning sites and an 
image with fine 

features 

 

051805 823K, 2 hours Similar to 051005  

052805 823K, 3 hours A few images with 
fine features  

053005 813K, 1 hours 40 min Only one image, 
terraces with bumps  

060105 803K, 3 hours Similar to 051005  

061605 

883K, 2 hours 20 min; 
Ag deposition at 365 
K. Coverage: 0.4ML 

to 5.0ML 
Flux: 2.2x10-3 ML/s 

Very large terraces. 
Fine features. Clean 

surface: m1-m40 
 

070105 893K, 2 hours 30min 
Very rough surface. 
A few images with 

fine structure. 
 

Xsi-Prime 
AlPdMn 

070205 
833K, 1 hour 30min; 

883K, 30 min; 
893K, 5 min. 

One image with 
bumps  
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Table 3.  Continued… STM database of experiments on pseudo tenfold surface of ξ/-Al-
Pd-Mn 

 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the papers 

070305 

833K, 45min; 
883K, 35 min; 
893K, 5 min; 

883K, 1 hour 5min 

Terraces with fine 
features  

070605 883K, 3 hours. 
One image with fine 
features, void and an 

island(?) 
 

071005 883K, ~3 hours. A few images with 
fine features  

082205 863-888K, 30 mins. A few images with 
large terraces.  

082305 883K, ~2 hours. 
Large terraces with 

pinning sites. Voids. 
Fine features. 

 

082405 883K, ~3 hours. Only two images with 
large terraces  

082505 863K, 3 hours; 
903K, 10 min. 

Ag deposition at 420 
K. Coverage: 0.1ML 

to 10.0ML 

Large terraces, fine 
features, pentagonal 

pits, screw 
dislocations. 

Clean surface: m1-30 

 

083105 863K, 3 hours; 
903K, 10 min. 

Ag deposition at 127 
K. Coverage: 0.27ML 

to 11.4ML 
Flux: 2.2x10-3 ML/s 

Large terraces, fine 
features. 

Clean surface: m1-
m15 

Double tip effects. 

 

090405 863K, 2 hours 30min; 
903K, 10 min. 

Large terraces, fine 
features. 

 

Xsi-Prime 
AlPdMn 

090505 863K, 2 hours; 
903K, 10 min. 

Ag deposition at 200 
K. Coverage: 0.27ML 

to 11.4ML 
Flux: 2.2x10-3 ML/s 

Large terraces, fine 
features. A secondary 

phase with fine 
features. 

Clean surface:m1-m18 
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Table 4.  STM database of experiments on twofold surface of d-Al-Cu-Co 
 

Folder 
name 

File 
name#

Sample Treatment* 

(Annealing Temp., 
Annealing time, Ag 
coverage, deposition  

flux) 

Image description Images used in 
the papers 

111205 953K, 2 hours 30min 

Large terraces. Two 
different types of 
terraces. One is 

rougher than the other. 
Atomic resolution. 

Atoms have  ~0.88nm 
and 0.44nm 

periodicities along the 
ten fold axis. Phason 

defects. 

 

112305 923K, 2 hours 50min 
Similar to 111205 but 
no atomic resolution 

this time. 
 

112705 953K, 2 hours Similar to 111205  
112805 953K, 2 hours 47min Similar to 112305  

 
2f-d-

AlCuCo 

120405 933K, 2 hours 30min 
Similar to 111205 but 
no atomic resolution 

this time. 
 

 

# Files were created on VT-STM PC computer (with Scala v4.1) in 224/225 Spedding 
Hall. The STM file names were coded as mmddyy when they were created and saved. 
 
* The samples used in the experiments: 
 For 5f-i-Al-Pd-Mn; 
  1)  ARR-4-12-2.1 (Al70.2Pd20.7Mn9.1) from 03/16/2004 to 11/29/2004   
  2)  ARR-1-92-1A  (Al70.22Pd20.73Mn9.05) from 11/29/2004 to 12/03/2005 
  3)  WDM-1-84-6   (Al69.8Pd20.7Mn9.5) from 12/09/2005 to 01/23/2006 
 For NiAl(110); 

1) BPK-1-65 (Ni50Al50) 
For ξ/-Al-Pd-Mn; 
 1)   p-10f-Al77.5Pd19Mn3.5
For 2f-d-Al-Cu-Co; 

  1)   RM093 (Al62.12Co17.14Cu19.74) 
 
Note: The purity of the Ag beads used in the deposition experiments was 99.99 at %. 
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+ Images used in the following papers: 
 

1) B. Unal, A.R. Ross, T.A.Lograsso, C. J. Jenks and P.A.Thiel, “Terrace selection 

during equilibration at an icosahedral quasicrystal surface”, Phys. Rev. B 71, 165411, 

2005. 

2)  B. Unal, A.R. Ross, T.A.Lograsso, C. J. Jenks and P.A.Thiel, “Voids and pits on 

sputter-annealed fivefold terraces of icosahedral Al-Pd-Mn quasicrystals, Phil. Mag. 

86, 816, 2006.  

3) B. Unal, C. J. Jenks and P.A.Thiel, “Comparison between experimental surface data 

and bulk structure models for quasicrystalline AlPdMn: Average atomic densities and 

chemical compositions”, Phys. Rev. B 77, 195419, 2008.  

4) B. Unal, C. J. Jenks and P.A.Thiel, “Adsorption sites on quasicrystal surfaces: Dark 

stars and white flowers”, will be submitted to Journal of Physics: Condense Matter.  

5)  “Nucleation and growth of Ag islands on fivefold Al-Pd-Mn quasicrystal surfaces: 

Dependence of island density on temperature and flux”, Phys. Rev. B 75, 064205, 

2007.  

6) B. Unal, J. W. Evans, T. A. Lograsso, A. R. Ross, C. J. Jenks and P. A. Thiel,       

“Terrace-dependent nucleation of small Ag clusters on a five-fold icosahedral 

quasicrystal surface”, Phil. Mag. 87, 2995, 2007.  

7) B. Unal, V. Fournee, P. A.Thiel and J. W. Evans, “Growth of height-selected Ag 

islands on fivefold icosahedral AlPdMn quasicrystalline surfaces: STM analysis and 

step dynamics modeling”, will be submitted to Physical Review Letters.  
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8) B. Unal, F. Qin, Y. Han, D,-J. Liu, D. Jin, A. R. Layson, C. J. Jenks, J. W. Evans, P. 

A. Thiel, “Scanning tunneling microscopy and density functional theory study of 

initial bilayer growth of Ag films on NiAl(110)”, Phys. Rev. B 76, 195410, 2007.  

9) J. Ledieu, R. McGrath, N.V. Richardson, Q. Chen, V. Fournee, T. Lograsso, A. Ross, 

K.J. Caspersen, B.Unal, J.W. Evans, and P.A. Thiel, “Step Structure on the Five-Fold 

Al-Pd-Mn Quasicrystalline Surface and on Related Surfaces”, Surf. Sci. 583, 4, 2005.  

10) V. Fournee, H.R. Sharma, M. Shimoda, A.P.Tsai, B. Unal, A.R. Ross, T.A.Lograsso, 

and P.A.Thiel, ”Quantum Size Effects in Metal Thin Films Grown on 

Quasicrystalline Substrates”, Phys. Rev. Lett. 95, 155504, 2005.  

11) Y. Han, B. Unal, F. Qin, D. Jin, C. J. Jenks, D.-J. Liu, P. A. Thiel, J. W. Evans,” 

Kinetics of Facile Bilayer Island Formation at Low Temperature: Ag/NiAl(110)”, 

Phys. Rev. Lett. 100, 116105, 2008.  

12) P.A. Thiel, “Quasicrystal Surfaces”, Annu.Rev.Phys.Chem. 59, 129, 2008. 

13) P.A.Thiel, “Review Paper”, 2009. 
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APPENDIX C. LOW ENERGY ELECTRON MICROSCOPY (LEEM) 
 

This part of the dissertation demonstrates some of the highlights of the LEEM 

experiments done both in NCEM in Lawrence Berkeley National Laboratory and in Sandia 

National Laboratories. This work involves collaborations with Dr. Andreas Schmid, Dr. Yu 

Sato and Dr. Thomas Duden from NCEM as well as collaborations with Dr. Kevin McCarty 

and Dr. Norm Bartelt from Sandia National Laboratories.  

LEEM has been used to investigate the fivefold surface of a i-Al-Pd-Mn quasicrystal 

from room temperature to high temperature.  The temperature of the sample was measured 

with a two color pyrometer (in Sandia Lab). Figure 1 is a bright-field LEEM image from the 

fivefold surface of i-Al-Pd-Mn quasicrystal showing the surface morphology of “chicken 

wire” array of surface steps. In the LEEM image, both rhomohedral mesh-shapes (area near 

lower left) and hexagonal mesh-shapes (most areas other than lower left) coexist. It should be 

note that every terrace has the same LEEM contrast.  

 
 

Figure 1. Bright-field LEEM image of high temperature quasicrystal surface at 905K. The 

electron energy is 4.4eV. The file is 1040800028. Image size, field of view (FOV) is 7μm. 
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In figure 2, a LEED pattern from the surface in figure 1 is given. The fivefold symmetry of 

the surface is obvious at this temperature. 

 

              
 
Figure 2. A LEED pattern from the high temperature surface at 837K. The electron energy is 

5 eV. Image number is 122107m000.  

In figure 3, there are two bright-field images from the same area showing “chicken wire” step 

structure on the majority of the surface at 300K. In figure 3(a) the difference in the LEEM 

contrast is emphasized at electron energy of 6.9 eV and in figure 3(b) the step contrast is 

emphasized at electron energy of 4.7 eV. Therefore, by varying the electron energy, it is 

possible to probe different features of the quasicrystal surface. In figure 4, two close-up 

bright-field images are given.  Figure 5(a) shows the selected area BF-LEEM image with 

three contrasts at 300K. Figure 5(b) shows the selected area diffraction (SAD) of figure 

5(a).Figure 6(a) demonstrates the bright-field image where three shades of contrast are also 

visible. Figure 6(b) shows the BF-LEEM-IV curves from the regions labeled in figure 6(a). It 

should be noted that the peaks are at the same locations and only relative intensities are 

different.  
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(a) (b)

 

Figure 3. Two bright-field LEEM images show the same area at 300K. The electron energy is 

(a) 6.9 eV and (b) 4.7 eV. The image (FOV) size is 7 micrometer. The image numbers are for 

(a) 10308000014 and for (b) 10308000015. 

 

  

(a) (b)

 

Figure 4. A close up of an area from the image figure 3(a), showing the LEEM contrast 

gradient across individual terraces. A close up of an area from the image figure 3(b), showing 

the steps bordering individual terraces. 
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(a) 

(b) 

Figure 5. (a) SAD BF-LEEM image at 6.5eV at 300K. The image size is 1.75μm. (b) a 

LEED pattern from (a) at 11.9eV.  Image numbers for (a) is 122007000007 and for (b) is 

122007000009. 
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(a) 

(b) 

Figure 6. (a) A BF-LEEM image with three types of contrast at 300K. (b) LEEM-IV curves 

from the regions in (a). The file number is 122007e. 
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Figure 7 shows two bright-field LEEM-IV curves of the specular beam (00000) at 300K and 

873K.  The difference in the curves suggests that the high and the low temperature surfaces 

of the quasicrystal are different at least for this particular i-Al-Pd-Mn qc under the specific 

surface preparation. 

 

 

Figure 7. Bright-field LEEM-IV curves of the specular beam (00000). Blue is at 300K and 

red is at 873K. The file numbers for blue curve and red curves are 122107p and 122107m, 

respectively. 
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