Combined space and time convergence analysis of a compressible flow algorithm

PDF Version Also Available for Download.

Description

In this study, we quantify both the spatial and temporal convergence behavior simultaneously for various algorithms for the two-dimensional Euler equations of gasdynamics. Such an analysis falls under the rubric of verification, which is the process of determining whether a simulation code accurately represents the code developers description of the model (e.g., equations, boundary conditions, etc.). The recognition that verification analysis is a necessary and valuable activity continues to increase among computational fluid dynamics practicioners. Using computed results and a known solution, one can estimate the effective convergence rates of a specific software implementation of a given algorithm and gauge ... continued below

Physical Description

8 p.

Creation Information

Kamm, J. R. (James R.); Rider, William & Brock, J. S. (Jerry S.) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this study, we quantify both the spatial and temporal convergence behavior simultaneously for various algorithms for the two-dimensional Euler equations of gasdynamics. Such an analysis falls under the rubric of verification, which is the process of determining whether a simulation code accurately represents the code developers description of the model (e.g., equations, boundary conditions, etc.). The recognition that verification analysis is a necessary and valuable activity continues to increase among computational fluid dynamics practicioners. Using computed results and a known solution, one can estimate the effective convergence rates of a specific software implementation of a given algorithm and gauge those results relative to the design properties of the algorithm. In the aerodynamics community, such analyses are typically performed to evaluate the performance of spatial integrators; analogous convergence analysis for temporal integrators can also be performed. Our approach combines these two usually separate activities into the same analysis framework. To accomplish this task, we outline a procedure in which a known solution together with a set of computed results, obtained for a number of different spatial and temporal discretizations, are employed to determine the complete convergence properties of the combined spatio-temporal algorithm. Such an approach is of particular interest for Lax-Wendroff-type integration schemes, where the specific impact of either the spatial or temporal integrators alone cannot be easily deconvolved from computed results. Unlike the more common spatial convergence analysis, the combined spatial and temporal analysis leads to a set of nonlinear equations that must be solved numerically. The unknowns in this set of equations are various parameters, including the asymptotic convergence rates, that quantify the basic performance of the software implementation of the algorithm.

Physical Description

8 p.

Source

  • Submitted to 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 23-26, 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6463
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976384
  • Archival Resource Key: ark:/67531/metadc928148

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 10:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kamm, J. R. (James R.); Rider, William & Brock, J. S. (Jerry S.). Combined space and time convergence analysis of a compressible flow algorithm, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc928148/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.