DAiSES: Dynamic Adaptivity in Support of Extreme Scale Department of Energy Project No. ER25622 Prime Contract No. DE-FG02-04ER25622 Final Report for September 15, 2004-September 14, 2008

PDF Version Also Available for Download.

Description

The DAiSES project [Te04] was focused on enabling conventional operating systems, in particular, those running on extreme scale systems, to dynamically customize system resource management in order to offer applications the best possible environment in which to execute. Such dynamic adaptation allows operating systems to modify the execution environment in response to changes in workload behavior and system state. The main challenges of this project included determination of what operating system (OS) algorithms, policies, and parameters should be adapted, when to adapt them, and how to adapt them. We addressed these challenges by using a combination of static analysis and ... continued below

Physical Description

366KB

Creation Information

PI: Patricia J. Teller, Ph.D. University of Texas-El Paso Department of Computer Science May 5, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The DAiSES project [Te04] was focused on enabling conventional operating systems, in particular, those running on extreme scale systems, to dynamically customize system resource management in order to offer applications the best possible environment in which to execute. Such dynamic adaptation allows operating systems to modify the execution environment in response to changes in workload behavior and system state. The main challenges of this project included determination of what operating system (OS) algorithms, policies, and parameters should be adapted, when to adapt them, and how to adapt them. We addressed these challenges by using a combination of static analysis and runtime monitoring and adaptation to identify a priori profitable targets of adaptation and effective heuristics that can be used to dynamically trigger adaptation. Dynamic monitoring and adaptation of the OS was provided by either kernel modifications or the use of KernInst and Kperfmon [Wm04]. Since Linux, an open source OS, was our target OS, patches submitted by kernel developers and researchers often facilitated kernel modifications. KernInst operates on unmodified commodity operating systems, i.e., Solaris and Linux; it is fine-grained, thus, there were few constraints on how the underlying OS can be modified. Dynamically adaptive functionality of operating systems, both in terms of policies and parameters, is intended to deliver the maximum attainable performance of a computational environment and meet, as best as possible, the needs of high-performance applications running on extreme scale systems, while meeting system constraints. DAiSES research endeavored to reach this goal by developing methodologies for dynamic adaptation of OS parameters and policies to manage stateful and stateless resources [Te06] and pursuing the following two objectives: (1) Development of mechanisms to dynamically sense, analyze, and adjust common performance metrics, fluctuating workload situations, and overall system environment conditions. (2) Demonstration, via Linux prototypes and experiments, of dynamic self-tuning and self-provisioning in HPC environments. From a high level, the DAiSES methodology, depicted in Figure 1, includes characterization of application resource usage patterns, identification of candidate (profitable) adaptation targets, determination of feasible adaptation ranges, definition of heuristics to trigger adaptation, design and implementation of OS monitoring, triggering, and adaptation code, and quantification of performance gains.

Physical Description

366KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/25622-1
  • Grant Number: FG02-04ER25622
  • DOI: 10.2172/951983 | External Link
  • Office of Scientific & Technical Information Report Number: 951983
  • Archival Resource Key: ark:/67531/metadc928102

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 5, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

PI: Patricia J. Teller, Ph.D. University of Texas-El Paso Department of Computer Science. DAiSES: Dynamic Adaptivity in Support of Extreme Scale Department of Energy Project No. ER25622 Prime Contract No. DE-FG02-04ER25622 Final Report for September 15, 2004-September 14, 2008, report, May 5, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc928102/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.