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1 Introduction 

Here are some items that could be expanded in a more complete introduction: 

• Lepton Flavor Violating (LFV) charged lepton decays provide a highly sensitive probe 
of physics beyond the Standard Model (SM), due to the un-observably small branch­
ing fractions (rv 10-5°) predicted for these modes in the SM (minimally extended 
to include massive neutrinos). Searches for SM forbidden muon processes, such 
as J-L -+ e"(, J-L -+ eee, and J-L -+ e conversion in nuclei, have provided so far the 
strongest constraints on LFV new physics. This statement can be characterized in a 
model-indepenent way as a lower bound on the scale associated to a set of dimension 
six effective operators parameterizing new physics beyond the SM. [Add numbers 
here]. 

• 	 It is a well known fact that while the decay J-L -+ e"( is only sensitive to a transi­
tion magnetic dipole operator, both J-L -+ eee and J-L -+ e conversion in nuclei are 
sensitive to transition charge radii operators as well as purely contact four-fermion 
interactions induced by physics beyond the SM. In other words, different LFV decays 
have different sensitivities to underlying LFV mechanisms (effective operators) . This 
leads naturally to ask the question whether one could infer the relative strength of 
these different operators in a completely phenomenological and model-independent 
way This would allow one to discriminate among different underlying models of LFV 
and thus would provide valuable input for model building. 

• 	 In Ref. [1] it was pointed out that in principle, by combining the rates of J-L -+ e"( 

and J-L -+ e conversion on different target nuclei, one could discriminate underlying 
models. [Here add a simple discussion of Z-dependence of overlap integrals 
as due to relativistic effects] 

• In this work we go back to this issue with the aim to 

- quantify the theoretical uncertainty induced by the hadronization process; 

quantify the experimental precision required to realistically infer useful infor­
mation on the underlying LFV mechanisms. 

We organize our discussion as follows: in Section 2 we review the derivation of the 
J-L -+ e conversion rate starting from a general effective theory description of t he LFV 
physics. In Section 3 we explore the phenomenological consequence of the simplest 
possible models, in which only one effective LFV operator dominates. We extend 
this analysis in Section 4 to the class of models in which two operators dominate. In 
Section 5 we specialize our discussion the SUSY see-saw model and summarize the 
conclusions of our analysis in Section 6 . •. 
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2 	 LFV effective interaction and the I.L ----7 e conversion 
rate 

In this section we review the procedure to calculate the rate of the J-l ---t e conversion in 
nuclei , starting from a general parameterization of new physics effects via effective operators 
at a scale A larger than the electroweak scale v ~ 176 GeV. 

2.1 Weak scale effective lagrangian 

We start with the most general effective Lagrangian which describes LFV transitions be­
tween charged leptons of first and second families at the weak scale: 

d q) - ~2 [(CDRmp euP'PLi' + CDLmp l!<T""PRi') Fp,eff 

+ L (c~k e,PPRJ-l + c~ql e,PPLJ-l) q,pq 
q 

+ L (C~~miJ-mqGF ePLJ-l + C~~miJ-mqGF ePRJ-l) qq 
q 

+ (CcRmiJ-GF ePLJ-l + CCLmiJ-GF ePRJ-l) :~ G~vG~v + h.C. ] (1) 
9H 

In the above expression A represents the scale where new physics effects appear. The 
CAB'S are dimensionless constants containing information about the underlying theory; 
the subindexes R , L correspond to the chirality of the final electron which is determined 
by PR,L = l±/, q are light and heavy quarks, Fpv = opAv - ovAp, G~v = opG~ - ovG~ ­
fabcG~G~, (7pv = ~bP, ,V] . GF = 1/v2 is the Fermi constant , while miJ- and mq represent 
the muon and quark masses, respectively. {3 is the usual {3-function defined as J-l~ == (3(9), 
where 9 is the strong coupling constant. The notation 9H,L and {3H,L is used to differen­
tiate the Lagrangian with all quarks contributions (H) from the one where heavy quarks 
are integrated out (L) . This Lagrangian describes three kind of interactions that violate 
the lepton flavor : The effective interaction with a photon (Dipole term), the effective in­
teraction with quarks (Scalar and Vector terms) and the effective interaction with gluons 
(Gluon term). 

2.2 Integrating out heavy quarks 

At lower energies where heavy quarks are integrated out, their contribution in the Scalar 
term can be parametrized through the Gluon term. The physical quantity used to do t he 
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matching is the energy-momentum tensor, that at high energies can be written as 

()~= L mq,qq'+ L mQQQ+f~GG, 	 (2) 
q'=u,d,s Q=e,t,b 9H 

where the contributions of light and heavy quarks are separated and GG stands for G~vG~v . 

The same expression can be written for different number of existing quarks, 

()C> 	 - L m q, qq' + L mQ' Q'Q' + X5 GGC> 
q'=u,d,s Q'=e,b 

() C> L -I, L Q"Q" + X4 GGC> m q, q q + mQ" 
q'=u,d,s Q"=e 

()C> L- m q, qq' +X3 GG . 	 (3)C> 
q'=u,d,s 

Xi == 2:3(3i corresponds to the energy-momentum tensor relation when i flavors are entering 
9i 

and 6 - i have been integrated out. The matching conditions read 

X5 GG mt tt + X6 GG 

X4 GG = mt tt + mb bb + X6 GG 

X3 GG mt It + mb bb + me CC + X6 GG . (4) 

Taking into account (4), after integrating out the heavy quarks the Lagrangian is: 

£ (q') = 
ef f - ~2 [ (CvRm" eaP"PLi' + CVLmp ea'"PRi') Fp" 

+ 	 L (Gt
q1e,PPRJ.l + Gtql e,P PLJ.l) ij,pq 

q=q' 

+ 	 L (G~%.mJ1,mqGF ePLJ.l + G~~mJ1,mqGF ePRJ.l ) ijq 
q=q' 

+ 	 (GCQRmJ1,GF ePLJ.l + GCQLmJ1,GF ePRJ.l) f~ G~IIG~v + h.C.] (5)
9L 

The Gluon term is written in terms of f3L and 9L, and the constants GCR and GCL have 
been changed to GCQR and GCQL respectively, to include the heavy quark contribution 

GGQR L G~92 "'(Q) + GGR'" 
Q 

GGQL L G~~) "'(Q) + GGL'" , 	 (6) 
Q 
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• _ :£ll. {3H g 3 _ X3- X4 - X 4 -XS _ X S -X6wIth K = = -(3 ~,K(c) = , K (b) = and K (t ) = , and each Xi reads (to one 
X 3 L gH X 3 X 3 X 3 

loop): 

(3 1 [11 4] (7)X - 2g3 = - 2(161T2) "3C2(G) - 3T(R) , 

being C2 (G) = 3 and T(R) = ~NF' where NF is the number of flavors, tells us that 
Xi - Xi+ l = -! 16~2' and so: K (Q) = 0.07 and K = 0.78. 

2.3 Nucleon level effective lagrangian 

The Lagrangian (5) can be evolved witht he renormalization group down to energy scales 
of the order of fL 1 GeV. At this low scale, the effective lagrangian has to be written in rv 

terms of the relevant degrees of freedom, namely nucleons, leptons, and photons. Hadronic 
matrix elements of the operators mqijq , q, pq and ~GG can be written as 

gL 

(q) ­
(NlmqqqIN) mN fSN 'l/JN'l/JN 

(q) ­
(Nlq,pqIN) fVN 'l/JNI P'l/JN 

(NI:~ GGIN) = mN fGN {;N'l/JN , (8)
gL 

where N represents each nucleon (N = p, n) , 'l/JN are the nucleon momentum-space wave­
functions, and f' s are nucleon form factors. The latter depend in principle on the momen­
tum transfer , which we will neglect as it is smaller than the typical scale of the nucleon 
structure. So, the prescription to build the operators in the Lagrangian at nucleon level is, 

( ) "' ~ mq qq ---t fs~ mN 'l/JN'l/JN 
( ) "' ~ 

q, pq ---t fvqN 'l/JNIP'l/JN 
"' ~{3L GG ---t fGN mN 'l/JN'l/JN' (9)

2g1 

The energy-momentum tensor relation for light quarks (Eq. (2)) and the fact that (Nle~IN) = 
mN (;N'l/JN imply the simple sum-rule 

1 = L f~% + fGN , (10) 
q=u,d,s 

which we use to eliminate the form-factore fGN in terms of the scalar nucleon form factors 
f~%. The nucleon vector form factors are known from the vector current conservation, 

f 
(u ) 
v.f = 2 f~~ = 1 

f (d) - (11)f~; = 1 V n -
2 

, 

f~~ = 0 f~~ = 0 
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while the calculation of the scalar form factors j~% is non-trivial. As discussed below, in 
our analysis we will use input from Chiral Perturbation Theory and the lattice to asses the 
impact of current and future uncertainties on the conversion rate. 
Collecting the above results, the Lagrangian at nucleon level can be written as 

£~7J ~ - ~2 N~n [(CVRm" enPvPLP + CVLm" euWPRP)Fpv 

- (N) - (N) ) -" ~ + ( CVR e"/PRJ-L + CVL e'''/PL/J, ¢NIP¢N 

- (N) - (N) ) -" ~ 1+ GpmJ.LmN ( CSR ePLJ-L + CSL ePRJ-L ¢N¢N + h.c. (12) 

The new effective couplings C not only contain the information about the underlying 
theory, but also about the hadronization. The vector couplings are: 

C(p) C (q) j (q)L 

VR - VR Vp (13) 

q=u,d,s 

C(n) C (q) lq)- L (14)VR VR Vn 
q=u,d,s 

C(p) C(q) j (q)- L 
VL VL Vp (15) 

q=u,d,s 

C(n) C (q) j (q)L (16)VL VL Vn' 
q=u,d,s 

while the scalar ones read: 

L C(q) j(q) + C (1 - L lq»)C(p) 
SR Sp GQR Sp (17)SR 

q=u,d,s q=u,d,s 

C(n) L C(q) j(q) + C (1- L lq») (18)SR SR Sn GQR Sn 
q=u,d,s q=u,d,s 

- (P) L d q) j (q) + C (1 - L j(q») (19)C SL SL Sp GQL Sp 
q=u,d,s q=u,d,s 

C(n) 
SL L C1~ j~~ + C GQL (1 - L j~~) . (20) 

q=u,d,s q=u,d,s 

I. 
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2.4 Transition rates 

The nucleon-level effective lagrangian can be used to take matrix elements at the atomic 
and nuclear level. In the non-relativistic approximation, the relevant matrix elements are 

(A, ZI ~p'lj;pIA, Z) = Zp(p) 
- ( )(A, Z I'Ij;n'lj;nIA, Z) = (A - Z)p n 

(A, ZI~p"l'lj;pIA, Z) = Z pep) 

(A, ZI~n .."o'lj;nIA, Z) = (A - Z)p(n) 

(A, ZI~N'/'Ij;NIA) = o. (21) 

Here lA, Z) represents the nuclear ground state, with A and Z the mass and atomic number 
of the isotope, while pcp) and pen) are the proton and neutron densities respectively. The 
conversion rate of the process is written as 

r conv ~ ICDR D + 4GFmJi (m/YtkS(P) + mnct2 Sen)) + cif14V(p) + C~nh 4v(n) 12 

2 
+ ~; ICDL D + 4GFmIJ. (mpCfiS(p) +mnC~'2 Sen)) + cifl4V(p) + c~n2 4v(n)1 

(22) 

in terms of the dimensionless integrals D, V(N), S(N), representing the overlap of electron 
and muon wavefunctions weighted by appropriate combinations of protons and neutron 
densities [1]. For completeness, we report the expressions of the overlap integrals in Ap­
pendix. For phenomenological applications, it is useful to normalize the conversion rate to 
the muon capture rate, introducing the quantity: 

BIJ.-->e(Z) == r conv(Z, A) (23)r capt(Z , A) 

Finally, we note here the branching ratio for the purely radiative process J.t --t e'Y in 
terms of the effective couplings defined above: 

B = r(J.t --t e'Y) 481[2 
IJ.-->e-y - r(J.t --t ellIJ.v ) = 4G} A4 (ICDRI2 

+ ICDL I2) . (24) 
e

2.5 Sources of uncertainty 

There are two sources of uncertainty in the calculation of the transition rate: (i) scalar 
form factors and (ii) neutron density (for high Z nuclei). The latter uncertainty has been 
carefully discussed in Ref. [1] , where several approaches to determine the neutron density 
have been reviewed and used in the calculation of the overlap integrals. Whenever data 
from polarized proton scattering exists, the uncertainty on the overlap integrals Sen) and 
y en) can be reduced to a few percent even for heavy nuclei such as Pb. Otherwise, it should 
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be considered to be of the order of 10%. 

In this work we focus on the uncertainty induced in the hadronization process, namely the 

scalar density matrix elements in the nucleon. 


The scalar ·form factors defined in Eq. 8 can be re-expressed in terms of ratio of quark 
masses and ratios of nucleon matrix elements as follows [5]: 

t<u)
Sp - mu 

mu +md 

(1 +.;) (71rN 

mp 
(25) 

t<d)
Sp - md 

mu +md 

(1 _.;) (71rN 

mp 
(26) 

j(s)
Sp 

ms 

mu+md 

(71rN
y­

mp 
(27) 

j(u)
Sn - mu 

mu +md 

(1 _.;) (71rN 

mp 
(28) 

j(d)
Sn 

md 

mu +md 

(1 +.;) (71rN 

mp 
(29) 

j(s)
Sn = 

ms 

mu +md 

(71rN 
y-, 

mp 
(30) 

where 

(71rN = mu + md (pluu + ddlp) (31)
2 

(pluu - ddlp).; (32)
(Pluu + ddlp) 

2(plsslp)
y (33)

(pluu + ddlp) . 

Information on the above matrix elements can be obtained either by the analysis of 
the octet baryon masses within Heavy Baryon Chiral Perturbation Theory, or by Lattice 
QCD. Especially for the ratio denoted here with y , the determination is still somewhat 
controversial. 

For the (7-term, we will use the range [9] : 

(71rN = (49 ± 3) MeV, (34) 

while for the ratio measuring isospin-breaking, we will use [5, 10]: 

.; = 0.132 ± 0.035 . (35) 

For the ratio y quantifying the strange quark content of the nucleon, the situation is less 
clear. A Chiral Perturbation Theory analysis gives the range y = 0.21 ± 0.2 [11] . The 
large uncertainty reflects the poor knowledge- of the relevant low-energy constants, even 
within resonance saturation (the matching renormalization scale is arbitrary). A recent 
lattice QCD analysis [12] with two dynamical flavors (in the overlap fermion formulation 
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with good chiral symmetry behavior) results in the central value y rv 0.05 , still consistent 
with the Chiral Perturbation Theory range. The difference with respect to previous lattice 
results has been attributed to a lattice artifact (mixing with wrong chirality operator) in 
the Wilson fermion approach. 

For the purpose of this work, we will vary the parameter y within both a "conservative" 
range and an " optimistic" range. For the conservative range we take y E [0,0.4], which 
coincides with the ChPT range of Ref [11]. For the optimistic range we take y E [0,0.05] 
which reflects more closely the recent JLQCD result [12] and seems a realistic guess of the 
uncertainty that will be reached by lattice calculations in the next decade. 

Finally, for the ratios of quark masses , we still use the the input [13]: 

m u 
0.553 ± 0.043 (36) 

md 

ms = 18.9 ± 0.8 (37) 
md 

3 Testing the single operator dominance hypothesis 

We now turn to illustrate the model discriminating power of a combined phenomenological 
analysis of /-L ~ e, and /-L ~ e conversion on different t arget nuclei. In order to organize 
the discussion, we define here four classes of models, in which only one underlying short 
distance operator dominates over all the others. We call these four classes of models the 
"single-operator" dominance models. We will first analyze this simplest class of models and 
then consider the more involved case in which two operators have comparable strengths 
and interference effects cannot be neglected. 

3.1 Dipole, Vector and Scalar models 

• Dipole m odel 

The Dipole model is defined by the assumption that , among all LFV short-distance 
operators, the dipole operator is the dominant one. For simplicity, we focus on the 
case in which the outgoing lepton has definite chirality. Explicitly, in terms of the 
effective couplings defined in Eq. 1, this class of models is defined by: 

CD =CDR #- 0 Celse = 0 . (38) 

Most supersymmetric scenarios, including SUSY-GUT models [14] and SUSY see-saw 
models [15] fall in this class of models . 

• Vector m od el 1: V(r) 

This model is defined by the assumption that the transition charge radius operator 
gives the dominant contribution to the LFV lagrangian. The model is defined by: 

- C (u ) -I- 0 C (d) - 1 C (u ) C - 0Cv = V R r vR - - 2" vR eIse - . (39) 
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• Vector model 2: V(Z) 

The Vector model 2 is defined by the assumption that the underlying dominant 
operator is an effective Z-penguin. The ratios of couplings of different quarks is 
governed by the couplings of the ZO coupling to quarks. The model is defined by: 

- C (u) ...J.. 0 C (d) - C(u) C - 0 (40)Cv = V R r v R - a vR else - , 

where a is the ratio of the down and up quarks coupling to the Z-boson: 

TJL +TJR - (QdL + QdR)sin2Bw = -1.73 . (41)
a = T3 + T3 - (QuL + QUR)sin2BwUL UR 

• Scalar model 

This model is defined by: 

_ (d) (s) (b)
Cs = CSR = CSR = CSR Celse = 0 . (42) 

This model may be explicitly realized in some regions of the usual R-parity conserving 
SUSY see-saw parameter space [16] (large tan{3 and relatively low "heavy" Higgs 
sector) and within R-parity violating SUSY [17]. 

Each of the above classes of models has only one free parameter - the ratio CdA2 of 
the dominant effective coupling over the square of the new physics scale. It is clear, then , 
that the single-operator dominance hypothesis makes parameter-free predictions for ratios 
of LFV branching fractions and therefore it can be tested so long as two LFV rates are 
measured. 

3.2 J-L ~ e'Y vs J-L ~ e conversion 

If j.t -+ e'Y and j.t -+ e conversion in at least one target nucleus are observed, this immedi­
ately opens up the possibility to test the Dipole dominance model. In fact, in this model 
the ratio 

R(Z) = B~_e (Z) (43)
B~-e'Y 

is entirely fixed by the overlap integrals D [1], which are essentially free of theoretical 
uncertainty. R(Z) is predicted to scale as O(aIrr) and we plot it in Fig. 1. Any deviation 
from this pattern implies the presence of scalar or/and vector contributions. In order to 
disentangle these possibilities, one needs to study the target dependence of the conversion 
rate. 

~ 

" 
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Figure 1: Ratio R(Z) of fJ, - e conversion over B(fJ, - e,) versus Z in the case of Dipole 
dominance model. 

3.3 Target d epend ence of /1----+ e conversion 

In principle, any single-operator model can be tested with two conversion rates, even if 
fJ, - e, is not observed. To illustrate this point, we update the analysis of Ref. [1] and plot 
in Fig. 2 the conversion rate (normalized to the rate in Aluminum) as a function of the Z of 
the t arget nucleus, for the four classes of single-operator models defined above. Compared 
to Ref. [1], the novelty here is the inclusion of a second vector model (V(Z)) and the fact 
that we consider only those target nuclei in which the process of muon capture followed 
by gamma emission produces electrons that do not overlap with the signal region [18] (a 
necessary condition for the measurement). 

4 

3 

2 

1 

~ 

o 20 40 60 80 

Figure 2: Target dependence of the fJ, - e conversion rate in different single-operator 
dominance models. We plot the conversion rates normalized to the rate in Aluminum 
(Z=13) versus the atomic number Z for the four theoretical models described in the text : 
D (blue), S (red) , V b ) (magenta), V(Z) (green) . R emove t he " spikes" ? (Au, ... ) 
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The results of Fig. 2 show some noteworthy feat ures. First , we note the quite different 
target dependence of the conversion rate in the two vector models considered. This can 
be understood as follows: in the case of the V(r) model, the behavior in Fig. 2 simply 
traces the Z-dependence of V (p) (the photon only couples to the protons in the nucleus). 
On the other hand, in the case of the V(Z) model, the Z boson couples predominantly 
to the neutrons in the nucleus and the residual target dependence of the ratio v (n ) /V (p) 

generates the behavior observed in Fig. 2. 
Next, let us focus on the actual discriminating power of the Z-dependence. Clearly, 

the plot shows that the model-discriminating power tends to increase with Z. This is a 
simple reflection of the fact that the whole effect is of relativistic origin and increases 
in heavy nuclei. So in an ideal world, in order to maximize the chance to discriminate 
among underlying models, one would like to measure the conversion rate in a lignt nucleus, 
say Aluminum or Titanium, as well as in a large-Z nucleus, like Lead or Gold. This 
simplified view, however, has to be confronted both with theoretical uncertainties and the 
actual experimental feasibility. Concerning the uncertainties, a simple analysis shows that 
the dominant uncertainty coming from the scalar matrix elements almost entirely cancels 
when taking ratios of conversion rates (even using the conservative range y E [O ,OA] for 
the strange scalar density matrix element. Moreover, in the large-Z tail of the plot, some 
residual uncertainty arises from the input on the neut ron density profile. When polarized 
proton scattering data exists, the uncertainty on the ratios of conversion rates becomes 
negligible. This point is illustrated by Table 1, where we report the detailed breakdown of 
uncertainties in the ratios BJ1.-;e(Ti)/ BJ1.-;e(AI) and BJ1.-+e(Pb)/ BJ1.-;e(AI). For other targets, 
the uncertainty induced by neutron densities never exceeds 5% [1]. The conclusions of this 
exercise are that : 

• 	In tests of the single-operator dominance models, the theoretical uncertainties (scalar 
matrix elements and neutron densities) largely cancel. 

• 	 As evident from Fig .. 2, a realistic discrimination among models requires a measure 
of BJ1.-;e (Ti)/BJ1.-;e (AI) at the level of 5% or better, or alternatively a measure of 
BJ1.-;e(Pb)/ BJ1.-+e(Al) at the 20% level. These are two cases that well represent the 
t rend in light and heavy target nuclei . 

Testing the two-operator dominance hypothesis 

In the last section we have discussed how to test the hypothesis of a single operator dom­
inance, and how to discriminate among different single-operator dominance models. If 
the single operator dominance hypothesis fails, one is lead to consider next simplest case, 
namely the two-operator dominance models, defined by the assumption that only two 
underlying operators have appreciable coefficients. Each model is characterized by two 
parameters, the effective strength CdA2 of one of the two operators and the ratio C2 / C1 

of the effective couplings of the two dominant operat ors. This class of models can be tested 
so long as two double ratios of LFV rates is available (three LFV measurements!) . 
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S D v(r) V(Z) 
BtJ.L-+e,Ti) 
B(J.L-+e,Al) 

1.70 ± 0.005 1.55 1.65 2.0 

B(J.L-+e,Pb) 
B(J.L-+e ,Al) 

0.69 ± 0.02 1.04 1.41 2.67 ± 0.06 

Table 1: Ratios of conversion rates in Titanium and Lead over Aluminum, in each of 
the four single-operator models: scalar (8), dipole (D), vector 1 (photon coupling to the 
quarks) and vector 2 (Z boson coupling to the quarks). In the scalar model, the scalar 
form factor induces a negligible uncertainty in the ratios involving two targets. In the case 
of Lead over Aluminum, the small uncertainty is dominated by the neutron density input. 

For the sake of illustration, we will consider the following three two-operator models: 
Dipole-Scalar, Dipole-Vector(Z) and Scalar-Vector(Z). We consider both the case of con­
structive and destructive interference among the two dominant operators, assuming that 
the ratio of Wilson coefficients r == C2/C1 is real (a relative phase can be included but it 
would unnecessary complicate the analysis at this early stage). 
In order to test this class of models, one has to assume that at least three LFV processes 
have been observed, so one can construct two independent double ratios that are entirely 
determined by the single parameter r. In models involving the Dipole operator among the 
dominant terms (such as Dipole-Scalar and Dipole-Vector) the three observables could be 
(i) f.L ---+ e"( and f.L ---+ e conversion in two different targets; (ii) f.L ---+ e conversion in three 
different targets. In models that do not involve a Dipole term (such as Scalar-Vector), 
only the possibility (ii) above is available. As representative target nuclei , we have chosen 
aluminum (AI), titanium (Ti) , and lead (Pb) . 

4.1 Dipole-Scalar 

In terms of the parameters defined in Section 3.1, this model is defined by Cs =I 0 and 
CD =±;e Cs· Clearly, in the limiting cases r ---+ 0 and r ---+ 00 one recovers the single­
operator models. 
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Figure 3: Dipole-Scalar model: Ratios BJ.L-+e(Al)/ BJ.L-+e,,( (panel (a)) , BJ.L-+e (Pb)/ BJ.L-+e(Al) 
(panel (b)), and BJ.L-+e (Ti)/ BJ.L-+e(Al) (panel (c)) as a function of LoglO(r) for positive 
CD/Cs. See text for details. 

We illustrate the features of this model in Figs. 3 and 4, which correspond to pos­
itive and negative sign of the ratio CD / CS, respectively. Panel (a) shows the behav­
ior of BJ.L-+e(Al)/ BJ.L-+e,,( versus the parameter r , while panels (b) and (c) show the ratios 
BJ.L-+e (Pb)/ BJ.L-+e (Al) and BJ.L-+e(Ti )/ BJ.L-+e(Al) , respectively. In panels (a) and (c) the curve 
is widened in the interference region by the uncertainty in the scalar form factors. The 
dominant uncertainty comes form the input parameter y, characterizing the strangeness 
content of the nucleon. On the other hand, the ratio BJ.L-+e(Pb) / Bp,-+e (Al) is affected not 
only by the uncertainty in the scalar form factors , but also by the uncertainty induced in 
the overlap integral by the neutron density in Pb. The width of the bands in panel (b) is 
determined by the most conservative combination of two kind of uncertainties. 

In all panels the wide band corresponds to the range y E [0, 0.4] , while the narrow 
band corresponds to the range y E [0 , 0.05] . This illustrates the effect of current and 
future hadronic uncertainties on the process of extracting information on short distance 
LFV couplings. The prominent feature in Fig. 4 is induced by the destructive interference 
dipole and scalar amplitudes. 

~ 

13 



~ 

10 

0.1 

0.01 

0.001 

,0-" 
- 4 -2- 8 

(a) 

, 

..AA 
r r'" 

~-8 - 6 -4 

, 

, 

, 

)- 6 -2 -2 

(b) (c) 

Figure 4: Dipole-Scalar model: Ratios BJ.L->e(Al)/ BJ.L-wy (panel (a)), BJ.L->e( Pb)/ BJ.L->e(Al) 
(panel (b)), and BJ.L->e(Ti) / BJ.L->e(Al) (panel (c)) as a function of LoglO(r) for negative 
CD / Cs . See text for details. 

4.2 Dipole-Vector 

In terms of the parameters defined in Section 3.1 , this model is defined by Cv i= 0 
and CD == ± ;e Cv · In figures 5 and 6 we plot the ratios BJ.L->e (Al) / BJ.L->e,,( (panel ( a)), 
Bw-.e(Pb)/ BJ.L-->e(Al) (panel (b)), and BJ.L->e(Ti)/BJ.L->e(Al) (panel (c)) versus the param­
eter r. Figures 5 and 6 correspond to positive and negative sign of the ratio CD/CV , 

respectively. Within this model, the only source of uncertainty arises from the vector over­
lap integral v (n)( Pb), sensitive to the neutron density in Pb. This uncertainty is quantified 
by the thickness of the band in panel (b). 

14 




10, ,I 

0.1 

not 

noot 

t, , ! \C . J10-' - 2 - 1 

(a) 

, J 
I( 
., 

~ . 0'':2 - 1 " 

(b) (c) 
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CD/Cv . See text for details. 
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Figure 6: Dipole- Vector model: Ratios BJ.L~e (Al)/ BJ.L~e"l (panel (a)), BJ.L~e( Pb)/ BJ.L~e (Al) 
(panel (b)), and BJ.L~e(Ti) / BJ.L~e(Al) (panel (c)) as a function of Log10(r) for negative 
CD / Cv . See text for details. 

4.3 Scalar-Vector 

In terms of the parameters defined in Section 3.1 , this model is defined by Cv =f. 0 and 
Cs = ±rCv . Since the Dipole term is assumed to be subdominant, in this case we 
include in the analysis only the ratios BJ.L~e(Pb)/ BJ.L~e(Al) and BJ.L~e(Ti)/ BJ.L~e(Al), shown 
in panels (b) and (c) of Figures 7 and 8 (for positive and negative values of Cs/Cv , 
respectively). While the ratio BJ.L~e(Ti) / BJ.L-->e(Al ) is affected only by the uncertainty in y, 
the ratio BJ.L~e(Pb)/BJ.L~e (Al) is affected also by the uncertainty in the Pb neutron density 
(through the overlap integrals) . The width of the bands in the plots is determined by the 
most conservative combination of two kind of uncertainties. 

In all panels the wide band corresponds to the range y E [0,0.4], while the narrow 
band corresponds to the range y E [0 , 0.05]. As in the case of the Dipole-Scalar model, the 
bands illustrate the effect of current and future hadronic uncertainties on extracting short 
distance LFV couplings. 
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Figure 7: Scalar- Vector model: Ratios B/-L-+e (Pb)/ B/-L-.-e(Al) (panel (b)) and 
B/-L-+e(Ti)/B/-L-+e(Al) (panel (c)) as a function of LoglO(r) for positive Cs/Cv . See text 
for details. 
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Figure 8: Scalar- Vector model: Ratios B/-L-+e(Pb)/ B/-L-+e(Al) (panel (b)) and 
B/-L-+e(Ti)/ B/-L-+e (AI) (panel (c)) as a function of Log10(r) for negative Cs/ Cv. See text 
for details. 

We conclude this section by summarizing what one could learn about the two-operator 
dominance models in the case that two double ratios of LFV rates could be measured 
experimentally. Our exercise shows t hat : 

. • 	 The current theoretical uncertainty on the st range content of the nucleon prevents a 
realistic test of t he two-operator models involving the Scalar amplitude. The range 
y E [O,O.4J induces uncertaint ies of up to one order of magnitude in the relevant 
double ratios in the interference region (thick bands in all plots above) . However, 
the uncertainty within reach of lattice QeD calculations will remove this obstacle in 
the coming years (this is illustrated by the thin bands in all plots above) . 

• Testing 	and discriminating among two-operator dominance models requires an ex­
perimental precision on the LFV rates that is comparable to the one needed to test 
the single operator models. .. 
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Figure 9: Add caption. 

Conclusions 

A The overlap integrals 

The initial state in the f-L-e conversion process is the Is state of the muonic atom and 
the final electron state is the the ground state of the resulting nucleus , with an out going 
electron of energy mp, - Eb, where Eb is the binding energy of the Is muonic atom. The lepton 
wave-functions are determined by solving the Dirac equation in the electric field of the 
nucleus [1]. They are characterized by -/'i, and f-L quantum numbers, which are eigenvalues 
of two operators that commute with the Hamiltonian, K and the third component of 
the angular momentum, j z, respectively. Those functions are easily written following the 
procedure of R Kitano et at. [1]: 

iI! (p,)(r, e, ¢) = ( ~~)(r)x=i/2(e , ¢) ) (44)
zf(~/r)x~1/2(e, ¢) , 

iI! (e)(r, e, ¢) = ( ~(;;)(r)x=i/2(e, ¢) ) (45)
zf(~)(r)X~1/2(e, ¢) , 

+ ( ) ±1/2 )iI! (e)(r, e,¢) = g(e)rXl (e,¢) (46)
( if~)(r)x=i/2(e,¢) . 
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The initial muon wave function (44) corresponds to the quantum numbers f.1 = ±1/2 and 
K, = -1, while the final electron state, (45) and (46), is one of the states in the continuum 
spectrum and its wave functions can be K, = ±l. They are normalized as follows: 

Jd3 xw(J.L)(x)w(J.L) (x) = 1 , 	 (47) 

Jd3xW(~K,W(X)W(~)K"W'(X) = 21l"8J.LJ.L,8KK,8(W - W') . 	 (48) 

In terms of the wafe-functions defined above, the overlap integrals have the following 
expressions [1] : 

00 

m5/2D = ~ mJ.L 1 dr r2[-E(r)](9~)j(~) + j(~) 9~»)J.L 	

100 

5/2S(P) 1 d 2Z (p)( - - j - j - )mJ.L = 2)2 0 r r P g(e)9(J.L) - (e) (J.L) 

2
00 

mry s(n) = 2~ 1 dr r2(A - Z)p(n)(9~)9~) - j(~/(~») 
00 

m5/2V(P) = 1 1 d 2 Z (P)( - - + j- j - )J.L 	 2)2 0 r r- P 9(e)9(J.L) (e) (J.L) 

2 
00 

mry v (n) = 2~ 1 dr r2(A - Z)p(n)(9~)9~) + j(~/(~») . (49) 

Here the electric field, E(r), is obtained by integrating Maxwell's equations as 

E(r-) = Z: r r,2 p(p) (r') dr' . 	 (50)r 	Jo 
The electric potential is obtained from E(r) as follows, 

00 

V(r) = -e1 E(r') dr' . 	 (51) 
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