Properties of salt-grown uranium single crystals.

PDF Version Also Available for Download.

Description

Recently single crystals of {alpha}-uranium were grown from a liquid salt bath. The electrical, magnetic and thermal properties of these crystals have been surveyed. The ratio of the room temperature resistivity of these crystals to the saturation value at low temperature is three times larger than any previously reported demonstrating that the crystals are of higher purity and quality than those in past work. The resistive signatures of the CDW transitions at 43, 37 and 22 K are obvious to the naked eye. The transition at 22 K exhibits temperature hysteresis that increases with magnetic field. In addition the superconducting ... continued below

Physical Description

20 p.

Creation Information

Cooley, J. C. (Jason C.); Hanrahan, R. J. (Robert J.); Hults, W. L. (William L.); Lashley, J. C. (Jason C.); Manley, M. E. (Michael E.); Mielke, C. H. (Charles H.) et al. January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently single crystals of {alpha}-uranium were grown from a liquid salt bath. The electrical, magnetic and thermal properties of these crystals have been surveyed. The ratio of the room temperature resistivity of these crystals to the saturation value at low temperature is three times larger than any previously reported demonstrating that the crystals are of higher purity and quality than those in past work. The resistive signatures of the CDW transitions at 43, 37 and 22 K are obvious to the naked eye. The transition at 22 K exhibits temperature hysteresis that increases with magnetic field. In addition the superconducting transition temperature from resistivity is 820 mK and the critical field is 80 mT. Contrary to earlier work where the Debye temperature ranged from 186 to 218 K, the Debye temperature extracted from the heat capacity is 254 K in good agreement with the predicted value of 250 K. Magnetoresistance, Hall effect and magnetic susceptibility measurements are underway. In time, measurements made on these crystals may help us to understand the origin of superconductivity and its relation to the CDW transitions in pure uranium.

Physical Description

20 p.

Source

  • Submitted to: Materials Society (TMS) annual meeting, February 11-15, 2001, New Orleans, LA.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-0835
  • Report No.: LA-UR-01-835
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975136
  • Archival Resource Key: ark:/67531/metadc927923

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cooley, J. C. (Jason C.); Hanrahan, R. J. (Robert J.); Hults, W. L. (William L.); Lashley, J. C. (Jason C.); Manley, M. E. (Michael E.); Mielke, C. H. (Charles H.) et al. Properties of salt-grown uranium single crystals., article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc927923/: accessed May 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.