Sheet Beam Klystron Instability Analysis

PDF Version Also Available for Download.

Description

Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.

Physical Description

4 pages

Creation Information

Bane, K. L. F.; Jensen, A.; Li, Z.; Stupakov, G. & Adolphsen, C. May 8, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Bane, K. L. F. Stanford Linear Accelerator Center, Menlo park, CA 94025, USA
  • Jensen, A. Stanford Linear Accelerator Center, Menlo park, CA 94025, USA
  • Li, Z. Stanford Linear Accelerator Center, Menlo park, CA 94025, USA
  • Stupakov, G. Stanford Linear Accelerator Center, Menlo park, CA 94025, USA
  • Adolphsen, C. Stanford Linear Accelerator Center, Menlo park, CA 94025, USA

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.

Physical Description

4 pages

Source

  • Presented at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13602
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 952991
  • Archival Resource Key: ark:/67531/metadc927875

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 8, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • June 3, 2020, 11:15 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bane, K. L. F.; Jensen, A.; Li, Z.; Stupakov, G. & Adolphsen, C. Sheet Beam Klystron Instability Analysis, article, May 8, 2009; United States. (https://digital.library.unt.edu/ark:/67531/metadc927875/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen