Comparison of TCP automatic tuning techniques for distributed computing

PDF Version Also Available for Download.

Description

Rather than painful, manual, static, per-connection optimization of TCP buffer sizes simply to achieve acceptable performance for distributed applications, many researchers have proposed techniques to perform this tuning automatically. This paper first discusses the relative merits of the various approaches in theory, and then provides substantial experimental data concerning two competing implementations - the buffer autotuning already present in Linux 2.4.x and 'Dynamic Right-Sizing.' This paper reveals heretofore unknown aspects of the problem and current solutions, provides insight into the proper approach for various circumstances, and points toward ways to further improve performance. TCP, for good or ill, is the ... continued below

Physical Description

9 p.

Creation Information

Weigle, E. H. (Eric H.) & Feng, W. C. (Wu-Chun) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Rather than painful, manual, static, per-connection optimization of TCP buffer sizes simply to achieve acceptable performance for distributed applications, many researchers have proposed techniques to perform this tuning automatically. This paper first discusses the relative merits of the various approaches in theory, and then provides substantial experimental data concerning two competing implementations - the buffer autotuning already present in Linux 2.4.x and 'Dynamic Right-Sizing.' This paper reveals heretofore unknown aspects of the problem and current solutions, provides insight into the proper approach for various circumstances, and points toward ways to further improve performance. TCP, for good or ill, is the only protocol widely available for reliable end-to-end congestion-controlled network communication, and thus it is the one used for almost all distributed computing. Unfortunately, TCP was not designed with high-performance computing in mind - its original design decisions focused on long-term fairness first, with performance a distant second. Thus users must often perform tortuous manual optimizations simply to achieve acceptable behavior. The most important and often most difficult task is determining and setting appropriate buffer sizes. Because of this, at least six ways of automatically setting these sizes have been proposed. In this paper, we compare and contrast these tuning methods. First we explain each method, followed by an in-depth discussion of their features. Next we discuss the experiments to fully characterize two particularly interesting methods (Linux 2.4 autotuning and Dynamic Right-Sizing). We conclude with results and possible improvements.

Physical Description

9 p.

Source

  • "Submitted to: 11th IEEE International Symposium on High-Performance Distributed Computing, Edinburgh, July 2002"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-2492
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976162
  • Archival Resource Key: ark:/67531/metadc927872

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:02 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Weigle, E. H. (Eric H.) & Feng, W. C. (Wu-Chun). Comparison of TCP automatic tuning techniques for distributed computing, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc927872/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.