QAM multi-path characterization due to ocean scattering

PDF Version Also Available for Download.

Description

A series of RF channel flight characterization tests are to be run, in early March, to benchmark high speed, 16QAM multi-path performance over the ocean surface. The modulation format being tested is a 16 differential phase, absolute amplitude, two level polar quadrature amplitude modulation. The bit rate is 100 Megabits per second. This transmitted signal will be generated in a burst mode, being on for 40 microseconds once every 40 milliseconds. An aircraft will radiate the RF test signal at 5 different altitudes. The aircraft will make two inward flights at each altitude with vertical and horizontal polarization respectively. Receivers ... continued below

Physical Description

37 p.

Creation Information

Petersen, T. L. (Thomas L.); Bracht, R. R.; Pasquale, R. V. (Regina V.); Dimsdle, J. (Jeffery) & Swanson, R. (Richard) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of RF channel flight characterization tests are to be run, in early March, to benchmark high speed, 16QAM multi-path performance over the ocean surface. The modulation format being tested is a 16 differential phase, absolute amplitude, two level polar quadrature amplitude modulation. The bit rate is 100 Megabits per second. This transmitted signal will be generated in a burst mode, being on for 40 microseconds once every 40 milliseconds. An aircraft will radiate the RF test signal at 5 different altitudes. The aircraft will make two inward flights at each altitude with vertical and horizontal polarization respectively. Receivers are to be placed in two different locations using circular antenna polarization. One receiver will be placed at an altitude of 230 feet above the ocean surface, and the other on a boat with the antenna placed just up off of the ocean surface. Data is to be collected over multiple wavelength changes in the difference between the line of sight and the reflected multi-path ray. The real time signal strength variation is to be recorded as well. Analysis of the resulting data will show flat fading and frequency selective fading effects. The test is run over two different days to provide for some variation in sea state conditions. This resulting information will help quantify the effectiveness of this novel modulation scheme for missile telemetry end event data applications.

Physical Description

37 p.

Source

  • Submitted to: International Telemetering Conference, San Diego, CA, Oct. 21-24, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6522
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976394
  • Archival Resource Key: ark:/67531/metadc927778

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Petersen, T. L. (Thomas L.); Bracht, R. R.; Pasquale, R. V. (Regina V.); Dimsdle, J. (Jeffery) & Swanson, R. (Richard). QAM multi-path characterization due to ocean scattering, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc927778/: accessed December 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.