Effects of an RTG power source on neutron spectroscopy measurements on the martian surface.

PDF Version Also Available for Download.

Description

A continuing goal of Mars science is to identify the exact locations of near-surface water and/or hydrated minerals using in situ measurements. Recent data from the Mars Odyssey mission has used both neutron and gamma-ray spectroscopy to measure large amounts of water ice near both polar regions . Furthermore, these data have also determined that in the mid-latitude regions, there likely exist relatively large amounts of hydrogen (-4-7 equivalent H2O wt.%), although it is not certain in which form this hydrogen exists . While these are exciting results, one drawback of these measurements is that they are averaged over a ... continued below

Physical Description

[4] p.

Creation Information

Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.) & Wiens, R. C. (Roger C.) January 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A continuing goal of Mars science is to identify the exact locations of near-surface water and/or hydrated minerals using in situ measurements. Recent data from the Mars Odyssey mission has used both neutron and gamma-ray spectroscopy to measure large amounts of water ice near both polar regions . Furthermore, these data have also determined that in the mid-latitude regions, there likely exist relatively large amounts of hydrogen (-4-7 equivalent H2O wt.%), although it is not certain in which form this hydrogen exists . While these are exciting results, one drawback of these measurements is that they are averaged over a large (-400 km) footp ri nt and do not reflect any small (<1 km) inhomogenieties in hydrogen abundance that likely exist on the Martian surface. For any future in situ mission (e g, Mars Smart Lander (MSL)) that seeks to measure and characterize nearsurface H 2O, especially in the mid-latitude regions, is will be necessary to know th e locati ons of the H20.

Physical Description

[4] p.

Source

  • Submitted to: Lunar And Planetary Science Conference, March 17-21, 2003, Houston, TX

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-03-0229
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976500
  • Archival Resource Key: ark:/67531/metadc927646

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:23 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.) & Wiens, R. C. (Roger C.). Effects of an RTG power source on neutron spectroscopy measurements on the martian surface., article, January 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc927646/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.